定制setsockopt只设置一次实现指定sock的永久quickack
一、背景
在之前的博客 通过内核模块按fd强制tcp的quickack方法-CSDN博客 里,我们给出了通过kprobe来捕获setsockopt,进行定制化的quickack相关的quick的数值更新,这种方式用的kprobe来做,虽然可以不用动到内核镜像,但是从方案上肯定还是比较临时的,另外,这种方式需要每次recv前都要设置setsockopt,这也是很奇怪的行为。
当然,我们可以通过之前的博客 通过内核模块按fd强制tcp的quickack方法-CSDN博客 里的 2.4 一节里的方法,设置路由表来实现正式的方案,这当然是可以的,但是相对不够灵活,也不能根据一个具体的socket连接来指定使能和不使能quickack,本文是通过修改内核逻辑,增加一个force quickack的标志位,放到sock的priv数据里,来进行定制化。
在第二章里,我们给出源码修改的部分,和实验用的程序,在第三章里,我们进行原理和细节的阐述。
二、源码及实验结果
我们在 2.1 里展示内核源码修改的部分,在 2.2 里贴出客户端代码和服务端代码,其中客户端代码和之前的 通过内核模块按fd强制tcp的quickack方法-CSDN博客 博客里的客户端代码一致,服务端代码略有变化。在 2.3 里我们展示运行结果。
2.1 内核源码部分
在setsockopt时,当设置tcp的sockopt时:
在执行__tcp_sock_set_quickack时,使用inet_connection_sock里的icsk_ca_priv区域进行标志位设置:
#if 1
if (val & 4)
*((u64*)((u64)(inet_csk(sk)->icsk_ca_priv) + sizeof(inet_csk(sk)->icsk_ca_priv) - 8)) = 1;
#endif
在内核进行检查是否进行quickack时增加该标志位的判断:
#if 1
|| *((u64*)((u64)(inet_csk(sk)->icsk_ca_priv) + sizeof(inet_csk(sk)->icsk_ca_priv) - 8))
#endif
为了做验证,我们修改了用于检查和判断是否进行quickack的最终出口部分的代码,增加了检查是否是我们刚加的标志位检查而进行quickack的打印:
#if 1
if (*((u64*)((u64)(inet_csk(sk)->icsk_ca_priv) + sizeof(inet_csk(sk)->icsk_ca_priv) - 8))) {
printk("send quickack by force quickack!\n");
}
#endif
2.2 测试用的客户端代码和服务端代码
客户端代码:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#define PORT 80
#define BUFFER_SIZE 1024
int main() {
int sock = 0;
struct sockaddr_in serv_addr;
char *message = "Hello from client";
// 创建 socket
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("\n Socket creation error \n");
return -1;
}
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(PORT);
// 转换 IPv4 和 IPv6 地址从文本到二进制
if (inet_pton(AF_INET, "10.100.130.87", &serv_addr.sin_addr) <= 0) {
printf("\nInvalid address/ Address not supported \n");
return -1;
}
// 连接到服务器
if (connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0) {
printf("\nConnection Failed \n");
return -1;
}
// 循环发送信息
while (1) {
send(sock, message, strlen(message), 0);
printf("Message sent: %s\n", message);
//sleep(1); // 每秒发送一次
usleep(1);
}
close(sock);
return 0;
}
服务端代码:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/tcp.h>
#define PORT 80
#define BUFFER_SIZE 1024
int main() {
int server_fd, new_socket;
struct sockaddr_in address;
int addrlen = sizeof(address);
char buffer[BUFFER_SIZE] = {0};
// 创建 socket
if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0) {
perror("Socket failed");
exit(EXIT_FAILURE);
}
{
// int optval = 1; // 启用 QUICKACK 选项
// socklen_t optlen = sizeof(optval);
// // 设置 TCP_QUICKACK 选项
// if (setsockopt(server_fd, IPPROTO_TCP, TCP_QUICKACK, &optval, optlen) < 0) {
// perror("setsockopt");
// close(server_fd);
// exit(EXIT_FAILURE);
// }
}
// 设置地址结构
address.sin_family = AF_INET;
address.sin_addr.s_addr = inet_addr("10.100.130.87");
address.sin_port = htons(PORT);
// 绑定 socket
if (bind(server_fd, (struct sockaddr *)&address, sizeof(address)) < 0) {
perror("Bind failed");
close(server_fd);
exit(EXIT_FAILURE);
}
// 开始监听
if (listen(server_fd, 3) < 0) {
perror("Listen failed");
close(server_fd);
exit(EXIT_FAILURE);
}
printf("Server is listening on %s:%d\n", "10.100.130.87", PORT);
// 循环接受信息
while (1) {
if ((new_socket = accept(server_fd, (struct sockaddr *)&address, (socklen_t*)&addrlen)) < 0) {
perror("Accept failed");
continue;
}
printf("Connected to client\n");
{
int optval = 5; // 启用 QUICKACK 选项
socklen_t optlen = sizeof(optval);
// 设置 TCP_QUICKACK 选项
if (setsockopt(new_socket, IPPROTO_TCP, TCP_QUICKACK, &optval, optlen) < 0) {
perror("setsockopt");
close(new_socket);
exit(EXIT_FAILURE);
}
}
// 接受信息
while (1) {
// {
// int optval = 1; // 启用 QUICKACK 选项
// socklen_t optlen = sizeof(optval);
// // 设置 TCP_QUICKACK 选项
// if (setsockopt(server_fd, IPPROTO_TCP, TCP_NODELAY, &optval, optlen) < 0) {
// perror("setsockopt");
// close(server_fd);
// exit(EXIT_FAILURE);
// }
// }
int valread = read(new_socket, buffer, BUFFER_SIZE);
if (valread > 0) {
buffer[valread] = '\0'; // 确保字符串以 null 结束
printf("Received: %s\n", buffer);
} else {
break; // 客户端关闭连接
}
}
printf("Client disconnected\n");
close(new_socket);
}
close(server_fd);
return 0;
}
2.3 运行结果
运行服务端程序:
./server_forcequickack
再运行客户端程序:
./client
从dmesg里可以看到我们增加的打印(确认是我们加的force quickack标志位导致的判断出需要quickack):
三、原理阐述
关于quickack的细节和原理参考之前的 通过内核模块按fd强制tcp的quickack方法-CSDN博客 博客。这里讲的是这篇博客说的定制setsockopt避免每次进行setsockopt的部分。
其实就是用的inet_connection_sock的icsk_ca_priv部分:
我们通过下面内核ko模块去捕获所有设置了setsockopt时的该icsk_ca_priv的内容情况。
下面的内核源码部分是之前的 通过内核模块按fd强制tcp的quickack方法-CSDN博客 博客里,打开了下面截图里的红色框出部分的打印:
上图中的是用于打印一段内存段的内容,有关内核里一些其他调试用的宏,有之前的博客做过整理 内核调试日志相关函数及宏_如何在ftrace中打印dump stack-CSDN博客 。
用来抓取该icsk_ca_priv内容的内核模块源码:
#include <linux/module.h>
#include <linux/capability.h>
#include <linux/sched.h>
#include <linux/uaccess.h>
#include <linux/proc_fs.h>
#include <linux/ctype.h>
#include <linux/seq_file.h>
#include <linux/poll.h>
#include <linux/types.h>
#include <linux/ioctl.h>
#include <linux/errno.h>
#include <linux/stddef.h>
#include <linux/lockdep.h>
#include <linux/kthread.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/init.h>
#include <asm/atomic.h>
#include <trace/events/workqueue.h>
#include <linux/sched/clock.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/tracepoint.h>
#include <trace/events/osmonitor.h>
#include <trace/events/sched.h>
#include <trace/events/irq.h>
#include <trace/events/kmem.h>
#include <linux/ptrace.h>
#include <linux/uaccess.h>
#include <asm/processor.h>
#include <linux/sched/task_stack.h>
#include <linux/nmi.h>
#include <asm/apic.h>
#include <linux/version.h>
#include <linux/sched/mm.h>
#include <asm/irq_regs.h>
#include <linux/kallsyms.h>
#include <linux/kprobes.h>
#include <linux/stop_machine.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("zhaoxin");
MODULE_DESCRIPTION("Module for debug quickack.");
MODULE_VERSION("1.0");
struct kern_tracepoint {
void *callback;
struct tracepoint *ptr;
bool bregister;
};
static void clear_kern_tracepoint(struct kern_tracepoint *tp)
{
if (tp->bregister) {
tracepoint_probe_unregister(tp->ptr, tp->callback, NULL);
}
}
#define INIT_KERN_TRACEPOINT(tracepoint_name) \
static struct kern_tracepoint mykern_##tracepoint_name = {.callback = NULL, .ptr = NULL, .bregister = false};
#define TRACEPOINT_CHECK_AND_SET(tracepoint_name) \
static void tracepoint_name##_tracepoint_check_and_set(struct tracepoint *tp, void *priv) \
{ \
if (!strcmp(#tracepoint_name, tp->name)) \
{ \
((struct kern_tracepoint *)priv)->ptr = tp; \
return; \
} \
}
//INIT_KERN_TRACEPOINT(sched_switch)
//TRACEPOINT_CHECK_AND_SET(sched_switch)
//INIT_KERN_TRACEPOINT(sched_waking)
//TRACEPOINT_CHECK_AND_SET(sched_waking)
typedef unsigned long (*kallsyms_lookup_name_func)(const char *name);
kallsyms_lookup_name_func _kallsyms_lookup_name_func;
void* get_func_by_symbol_name_kallsyms_lookup_name(void)
{
int ret;
void* pfunc = NULL;
struct kprobe kp;
memset(&kp, 0, sizeof(kp));
kp.symbol_name = "kallsyms_lookup_name";
kp.pre_handler = NULL;
kp.addr = NULL; // 作为强调,提示使用symbol_name
ret = register_kprobe(&kp);
if (ret < 0) {
printk("register_kprobe fail!\n");
return NULL;
}
printk("register_kprobe succeed!\n");
pfunc = (void*)kp.addr;
unregister_kprobe(&kp);
return pfunc;
}
void* get_func_by_symbol_name(const char* i_symbol)
{
if (_kallsyms_lookup_name_func == NULL) {
return NULL;
}
return _kallsyms_lookup_name_func(i_symbol);
}
#include <uapi/linux/rtnetlink.h>
#include <net/sock.h>
#include <net/inet_connection_sock.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/ip.h>
#include <net/dst.h>
#include <net/route.h>
#include <net/tcp.h>
#include <linux/inet.h>
#include <linux/sockptr.h>
// void print_dst_entry(struct dst_entry *dst) {
// struct rtable *rt = (struct rtable *)dst;
// struct in_device *in_dev;
// if (!dst)
// return;
// in_dev = __in_dev_get_rcu(rt->u.dst.dev);
// printk(KERN_INFO "Dst Entry Info:\n");
// printk(KERN_INFO " Input Device: %s\n", rt->u.dst.dev->name);
// printk(KERN_INFO " Output Device: %s\n", rt->u.dst.dev->name);
// if (in_dev) {
// printk(KERN_INFO " In Device MTU: %d\n", in_dev->mtu);
// printk(KERN_INFO " In Device Output MTU: %d\n", in_dev->output_mtu);
// }
// printk(KERN_INFO " Expires: %ld\n", dst->expires);
// printk(KERN_INFO " Flags: 0x%lx\n", dst->flags);
// printk(KERN_INFO " Last Use: %lu\n", dst->lastuse);
// printk(KERN_INFO " Obsolete: %lu\n", dst->obsolete);
// printk(KERN_INFO " Hash Chain: %p\n", dst->dn.next);
// printk(KERN_INFO " Input Hash: 0x%lx\n", dst->hash);
// printk(KERN_INFO " Output Hash: 0x%lx\n", dst->child_mask);
// printk(KERN_INFO " Reference Count: %d\n", atomic_read(&dst->__refcnt));
// printk(KERN_INFO " Use Count: %d\n", dst->use);
// printk(KERN_INFO " Wireless Use Count: %d\n", dst->wireless_ref);
// printk(KERN_INFO " Last Metric Update: %lu\n", dst->last_metric_update);
// printk(KERN_INFO " Protocol Specific Data: %p\n", dst->input);
// printk(KERN_INFO " Optimistic ACK Prediction: %d\n", tcp_hdr(rt->u.dst.xfrm)->ack_seq - 1);
// }
void print_rtable_info(struct rtable *rt) {
if (!rt) {
printk(KERN_ERR "rtable is NULL\n");
return;
}
// 打印 rtable 的基本信息
printk(KERN_INFO "Route Entry Information:\n");
//printk(KERN_INFO "Destination Address: %pI4\n", &rt->dst.dest.addr);
printk(KERN_INFO "Gateway: %pI4\n", &rt->rt_gw4);
printk(KERN_INFO "Flags: 0x%x\n", rt->rt_flags);
printk(KERN_INFO "Type: %u\n", rt->rt_type);
printk(KERN_INFO "Input Interface: %d\n", rt->rt_iif);
printk(KERN_INFO "Uses Gateway: %u\n", rt->rt_uses_gateway);
printk(KERN_INFO "MTU: %u\n", rt->rt_pmtu);
printk(KERN_INFO "MTU Locked: %u\n", rt->rt_mtu_locked);
printk(KERN_INFO "Generation ID: %d\n", rt->rt_genid);
}
// void print_dst_entry_info(struct dst_entry *dst) {
// if (!dst) {
// printk(KERN_ERR "dst_entry is NULL\n");
// return;
// }
// // 打印 dst_entry 的基本信息
// printk(KERN_INFO "Destination Address: %pI4\n", &dst->dest.addr);
// printk(KERN_INFO "Flags: 0x%x\n", dst->flags);
// //printk(KERN_INFO "Reference Count: %d\n", atomic_read(&dst->refcnt));
// // 如果是 IPv4 路由表
// // {
// // struct rtable *rt = (struct rtable *)dst; // 转换为 rtable
// // printk(KERN_INFO "Gateway: %pI4\n", &rt->rt_gw);
// // printk(KERN_INFO "Interface: %s\n", rt->dev->name);
// // printk(KERN_INFO "Metric: %u\n", rt->rt_metric);
// // }
// // 可以添加更多字段的信息
// }
int _notquickmodecount = 0;
static bool tcp_in_quickack_mode(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
const struct inet_connection_sock *icsk = inet_csk(sk);
const struct dst_entry *dst = __sk_dst_get(sk);
u32 dst_metric_ret = 0;
u32 dst_v = 0;
bool ret;
if (dst) {
dst_v = 1;
dst_metric_ret = dst_metric(dst, RTAX_QUICKACK);
}
ret = (dst && dst_metric(dst, RTAX_QUICKACK)) ||
(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
if (ret) {
printk("pid[%d]quick mode[%u], dst[%u]dst_metric_ret[%u]icsk->icsk_ack.quick[%u]quickmode[%u]src[%pI4]dst[%pI4]src_port[%u]dst_port[%u]\n",
current->pid, ret ? 1 : 0,
dst_v, dst_metric_ret, (u32)icsk->icsk_ack.quick, (!inet_csk_in_pingpong_mode(sk))?1:0,
&sk->sk_rcv_saddr, &sk->sk_daddr, ntohs(inet->inet_sport), ntohs(inet->inet_dport));
}
else {
if (_notquickmodecount > 10) {
}
else {
_notquickmodecount++;
printk("pid[%d]quick mode[%u], dst[%u]dst_metric_ret[%u]icsk->icsk_ack.quick[%u]quickmode[%u]src[%pI4]dst[%pI4]src_port[%u]dst_port[%u]\n",
current->pid, ret ? 1 : 0,
dst_v, dst_metric_ret, (u32)icsk->icsk_ack.quick, (!inet_csk_in_pingpong_mode(sk))?1:0,
&sk->sk_rcv_saddr, &sk->sk_daddr, ntohs(inet->inet_sport), ntohs(inet->inet_dport));
}
}
return ret;
}
static int haslog = 0;
struct kprobe _kp;
struct kprobe _kp1;
// __tcp_ack_snd_check
int kprobecb_tcp_ack_snd_check(struct kprobe* i_k, struct pt_regs* i_p)
{
//printk("kprobecb_tcp_ack_snd_check enter");
//unsigned long arg1 = regs->di;
struct sock *sk = (struct sock *) i_p->di;
struct inet_sock *inet = inet_sk(sk);
__be32 target_ip, dst_ip;
target_ip = in_aton("10.100.130.87");
dst_ip = in_aton("10.100.130.103");
if (sk->sk_rcv_saddr == target_ip
&& sk->sk_daddr == dst_ip) {
if (tcp_in_quickack_mode(sk)) {
//haslog = 1;
//printk("quick mode, src[%pI4]dst[%pI4]src_port[%u]dst_port[%u]\n", &sk->sk_rcv_saddr, &sk->sk_daddr, ntohs(inet->inet_sport), ntohs(inet->inet_dport));
//printk(KERN_INFO "Destination IP: %pI4\n", &sk->sk_daddr);
//print_rtable_info((struct rtable *)__sk_dst_get(sk));
}
else {
//printk("NOT quick mode, src[%pI4]dst[%pI4]src_port[%u]dst_port[%u]\n", &sk->sk_rcv_saddr, &sk->sk_daddr, ntohs(inet->inet_sport), ntohs(inet->inet_dport));
//printk("NOT quick mode\n");
}
}
return 0;
}
#define MY_KERNEL_KLOG_INFO_HEXDUMP( addr, size) \
do { \
print_hex_dump(KERN_INFO, "hex_dump:", DUMP_PREFIX_NONE, 32, 4, addr, size, true); \
} while (0)
static void tcp_quickack_config(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
if (icsk->icsk_ack.quick != 16) {
icsk->icsk_ack.quick = 16;
printk("pid[%d]set quick = 16\n", current->pid);
}
// unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
// if (quickacks == 0)
// quickacks = 2;
// quickacks = min(quickacks, max_quickacks);
// if (quickacks > icsk->icsk_ack.quick)
// icsk->icsk_ack.quick = quickacks;
}
#if 0
void kprobecb_tcp_sock_set_quickack(struct kprobe* i_k, struct pt_regs* i_p,
unsigned long i_flags)
{
struct sock *sk = (struct sock*) i_p->di;
int* pval = i_p->r10;
int val;
int len = i_p->r8;
//tcp_enter_quickack_mode(sk, 16);
//printk("val=%d\n", val);
printk("len[%d]\n", len);
if (len == 4) {
val = *pval;
if ((val & 1) && val != 1) {
printk("111 val=%d\n", val);
//tcp_enter_quickack_mode(sk, 16);
//tcp_incr_quickack(sk, 16u);
}
}
}
#endif
static int handler_pre(struct pt_regs *regs) {
// 打印 pt_regs 中的内容
printk(KERN_INFO "pt_regs contents:\n");
printk(KERN_INFO "RIP: 0x%lx\n", regs->ip);
printk(KERN_INFO "RSP: 0x%lx\n", regs->sp);
printk(KERN_INFO "RBP: 0x%lx\n", regs->bp);
printk(KERN_INFO "RAX: 0x%lx\n", regs->ax);
printk(KERN_INFO "RBX: 0x%lx\n", regs->bx);
printk(KERN_INFO "RCX: 0x%lx\n", regs->cx);
printk(KERN_INFO "RDX: 0x%lx\n", regs->dx);
printk(KERN_INFO "RSI: 0x%lx\n", regs->si);
printk(KERN_INFO "RDI: 0x%lx\n", regs->di);
printk(KERN_INFO "R8: 0x%lx\n", regs->r8);
printk(KERN_INFO "R9: 0x%lx\n", regs->r9);
printk(KERN_INFO "R10: 0x%lx\n", regs->r10);
printk(KERN_INFO "R11: 0x%lx\n", regs->r11);
printk(KERN_INFO "R12: 0x%lx\n", regs->r12);
printk(KERN_INFO "R13: 0x%lx\n", regs->r13);
printk(KERN_INFO "R14: 0x%lx\n", regs->r14);
printk(KERN_INFO "R15: 0x%lx\n", regs->r15);
return 0; // 继续执行被探测的函数
}
int kprobecb_tcp_sock_set_quickack(struct kprobe* i_k, struct pt_regs* i_p)
{
struct sock *sk = (struct sock*) i_p->di;
struct inet_connection_sock *icsk = inet_csk(sk);
//sockptr_t pval = (sockptr_t)i_p->cx;
int val;
int len = i_p->r9;
//tcp_enter_quickack_mode(sk, 16);
//printk("val=%d\n", val);
// printk("len[%d][0x%llx][0x%llx][0x%llx][0x%llx][0x%llx]\n", len,
// i_p->di, i_p->si, i_p->dx, i_p->cx, i_p->r9);
if (len == 4) {
copy_from_user(&val, i_p->cx, 4);
//memcpy(&val, i_p->cx, 4);
// if (copy_from_sockptr(&val, pval, sizeof(val))) {
// return 0;
// }
if (i_p->dx == 12) {
if ((val & 1) && val != 1) {
//printk("111 val=%d\n", val);
//handler_pre(i_p);
//tcp_enter_quickack_mode(sk, 16);
tcp_quickack_config(sk);
MY_KERNEL_KLOG_INFO_HEXDUMP(icsk->icsk_ca_priv, 104);
printk("0x%llx\n",
*((u64*)((u64)(inet_csk(sk)->icsk_ca_priv) + sizeof(inet_csk(sk)->icsk_ca_priv) - 8)));
}
}
}
return 0;
}
int kprobe_register_func_tcp_ack_snd_check(void)
{
int ret;
memset(&_kp, 0, sizeof(_kp));
_kp.symbol_name = "__tcp_ack_snd_check";
_kp.pre_handler = kprobecb_tcp_ack_snd_check;
ret = register_kprobe(&_kp);
if (ret < 0) {
printk("register_kprobe fail!\n");
return -1;
}
return 0;
}
int kprobe_register_func_tcp_sock_set_quickack(void)
{
int ret;
memset(&_kp1, 0, sizeof(_kp1));
_kp1.symbol_name = "tcp_setsockopt";
_kp1.pre_handler = kprobecb_tcp_sock_set_quickack;
ret = register_kprobe(&_kp1);
if (ret < 0) {
printk("register_kprobe fail!\n");
return -1;
}
return 0;
}
void kprobe_unregister_func_tcp_ack_snd_check(void)
{
unregister_kprobe(&_kp);
}
void kprobe_unregister_func_tcp_sock_set_quickack(void)
{
unregister_kprobe(&_kp1);
}
static int __init testquickack_init(void)
{
_kallsyms_lookup_name_func = get_func_by_symbol_name_kallsyms_lookup_name();
kprobe_register_func_tcp_ack_snd_check();
kprobe_register_func_tcp_sock_set_quickack();
#if 0
mykern_sched_waking.callback = cb_sched_waking;
for_each_kernel_tracepoint(sched_waking_tracepoint_check_and_set, &mykern_sched_waking);
if (!mykern_sched_waking.ptr) {
printk(KERN_ERR "mykern_sched_waking register failed!\n");
return -1;
}
else {
printk(KERN_INFO "mykern_sched_waking register succeeded!\n");
}
tracepoint_probe_register(mykern_sched_waking.ptr, mykern_sched_waking.callback, NULL);
mykern_sched_waking.bregister = 1;
#endif
return 0;
}
static void __exit testquickack_exit(void)
{
//clear_kern_tracepoint(&mykern_sched_waking);
//tracepoint_synchronize_unregister();
kprobe_unregister_func_tcp_ack_snd_check();
kprobe_unregister_func_tcp_sock_set_quickack();
}
module_init(testquickack_init);
module_exit(testquickack_exit);
从下图中抓到的情况可以看到icsk_ca_priv的最后8个字节是没有使用的,且都是0:
所以,我们用这8个字节来存放我们的定制化setsockopt的标志位。
为了打印这个icsk_ca_priv的状态,我们借用tcp_setsockopt的probe的逻辑,传值3,这样不会触发设置icsk_ca_priv的逻辑,但是可以打印icsk_ca_priv的内容。进行打印的源码逻辑:
可以从下图中看到,我们打印我们通过setsockopt进行设置force quickack的sock的icsk_ca_priv的内容就可以看到最后一个u64被赋值成了1: