当前位置: 首页 > article >正文

swin transformer中相对位置编码解析

在论文中,作者发现相对位置编码的效果会更好一些。

代码的实现为:

 # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

在forward中的计算为:

relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

完整的class实现为:

class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def extra_repr(self) -> str:
        return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'

    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops

这个计算过程,我们用windows size = 2为例来看一下计算过程。图片取自链接transformer入门 论文阅读(4) Swin Transformer | shifted window,relative position bias详解

通过这个图示,是比较容易理解相对位置编码的计算过程的,下面我们在实际的代码上跑一下,看看实际的数值变化,以及在forward中的计算过程。

我们使用swin transformer的imagenet image classification任务为例,逐步来解释每行代码。在这个任务中,window_size = 7。

1. 定义relative_position_bias_table

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

这个定义了relative_position_bias_table,对应上图示中的relative_position_bias_table。

这个值的初始化值为shape为[169, 4]的全0值。169是(2 * window_size[0] - 1) * (2 * window_size[1] - 1),也就是(27-1)(2*7-1) = 169.

然后将其初始化为一个服从截断正态分布的随机值,标准差为 0.02。截断正态分布的范围通常限制在均值两侧一定范围内,避免生成过大或过小的值。

trunc_normal_(self.relative_position_bias_table, std=.02)

经过截断和正态分布的初始化后,self.relative_position_bias_table的shape是[169, 4],说明有169个相对位置可以索引,有4个头。

self.relative_position_bias_table的值是:

self.relative_position_bias_table = Parameter containing:
tensor([[ 1.3016e-02,  1.2930e-02,  1.5971e-02, -2.9950e-02],
        [-1.2150e-02, -1.8186e-02,  1.8201e-02, -2.9683e-02],
        [-1.4085e-03, -9.6917e-03,  1.7187e-02, -2.1197e-02],
        [ 4.5870e-04, -2.5759e-02,  1.0428e-02,  7.8378e-03],
        ...
        [-4.6959e-03, -1.1017e-02,  1.3361e-02,  7.7851e-03],
        [ 1.7211e-02, -9.5882e-03,  6.2699e-02,  7.8999e-03],
        [ 1.5927e-02, -5.5237e-02,  1.6605e-02, -1.4664e-02],
        [-2.6448e-02,  8.7442e-03,  5.1785e-03,  3.0192e-02]],
       requires_grad=True)

这个shape的原因是:

相对位置的意义为:对于窗口注意力机制,每个 token 的位置都是相对于窗口内其他 token 定义的。窗口大小为 (Wh, Ww),窗口内总共有 Wh * Ww 个 token。相对位置表示的是两个 token 在垂直方向(高度)和水平方向(宽度)上的偏移量。

例如:

  • 一个窗口大小为 (3, 3)
    • 水平相对位置范围是:[-2, -1, 0, 1, 2](总共 2 * Wh - 1 = 5)。
    • 垂直相对位置范围是:[-2, -1, 0, 1, 2](总共 2 * Ww - 1 = 5)。

这意味着在 2D 平面中,窗口内的 token 之间的相对位置总共有:

(2 * Wh - 1) * (2 * Ww - 1)

例如,(3, 3) 窗口有 5 * 5 = 25 种可能的相对位置。


self.relative_position_bias_table` 的形状是(2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)

  • 第一维度(2 * Wh - 1) * (2 * Ww - 1),表示所有可能的相对位置。
  • 第二维度num_heads,因为每个注意力头都会有一个单独的偏置。

例如:

  • 窗口大小 (3, 3),有 25 种可能的相对位置,num_heads=8
  • relative_position_bias_table 的形状为 (25, 8)

这一表将存储每个相对位置对于每个注意力头的偏置值。

2.获取绝对位置

# get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww

在这里,

coords_h = tensor([0, 1, 2, 3, 4, 5, 6]), coords_w = tensor([0, 1, 2, 3, 4, 5, 6])

经过meshgrid和stack计算之后,

coords = tensor([[[0, 0, 0, 0, 0, 0, 0],
         [1, 1, 1, 1, 1, 1, 1],
         [2, 2, 2, 2, 2, 2, 2],
         [3, 3, 3, 3, 3, 3, 3],
         [4, 4, 4, 4, 4, 4, 4],
         [5, 5, 5, 5, 5, 5, 5],
         [6, 6, 6, 6, 6, 6, 6]],

        [[0, 1, 2, 3, 4, 5, 6],
         [0, 1, 2, 3, 4, 5, 6],
         [0, 1, 2, 3, 4, 5, 6],
         [0, 1, 2, 3, 4, 5, 6],
         [0, 1, 2, 3, 4, 5, 6],
         [0, 1, 2, 3, 4, 5, 6],
         [0, 1, 2, 3, 4, 5, 6]]])

用图示表示就是

然后经过flatten计算

coords_flatten = tensor(
[[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3,3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,6],
[0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2,3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6]])

coords_flatten.shape = torch.Size([2, 49])

展平后代表的是相同的意义,只是排列形式发生了变化。

3.获取相对位置索引(通过绝对位置相减)

relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2

coords_flatten[:, :, None]是shape为[2, 49, 1]的tensor。None在最后添加了一维。

coords_flatten[:, :, None] = tensor([[[0],
         [0],
         [0],
         [0],
         [0],
         [0],
         [0],
         [1],
         [1],
         [1],
         [1],
         [1],
         [1],
         [1],
         [2],
         [2],
         [2],
         [2],
         [2],
         [2],
         [2],
         [3],
         [3],
         [3],
         [3],
         [3],
         [3],
         [3],
         [4],
         [4],
         [4],
         [4],
         [4],
         [4],
         [4],
         [5],
         [5],
         [5],
         [5],
         [5],
         [5],
         [5],
         [6],
         [6],
         [6],
         [6],
         [6],
         [6],
         [6]],

        [[0],
         [1],
         [2],
         [3],
         [4],
         [5],
         [6],
         [0],
         [1],
         [2],
         [3],
         [4],
         [5],
         [6],
         [0],
         [1],
         [2],
         [3],
         [4],
         [5],
         [6],
         [0],
         [1],
         [2],
         [3],
         [4],
         [5],
         [6],
         [0],
         [1],
         [2],
         [3],
         [4],
         [5],
         [6],
         [0],
         [1],
         [2],
         [3],
         [4],
         [5],
         [6],
         [0],
         [1],
         [2],
         [3],
         [4],
         [5],
         [6]]])

coords_flatten[:, None, :]是shape为[2, 1, 49]的tensor,None在中间添加了一维。

coords_flatten[:, None, :] = tensor(
[[[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3,3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6,6, 6, 6]],
[[0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1,2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3,4, 5, 6]]])

coords_flatten[:, None, :]与coords_flatten在数值上是一致的,只是多添加了一维。

coords_flatten = tensor(
[[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3,3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,6],
[0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2,3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6]])

coords_flatten[:, :, None]的shape是[2, 49, 1],coords_flatten[:, None, :]的shape是[2, 1, 49],通过广播机制进行相减,得到相对坐标relative_coords,relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]

relative_coords = 
tensor([[[ 0,  0,  0,  0,  0,  0,  0, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2,
          -2, -2, -2, -2, -3, -3, -3, -3, -3, -3, -3, -4, -4, -4, -4, -4, -4,
          -4, -5, -5, -5, -5, -5, -5, -5, -6, -6, -6, -6, -6, -6, -6],
         [ 0,  0,  0,  0,  0,  0,  0, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2,
          -2, -2, -2, -2, -3, -3, -3, -3, -3, -3, -3, -4, -4, -4, -4, -4, -4,
          -4, -5, -5, -5, -5, -5, -5, -5, -6, -6, -6, -6, -6, -6, -6],
         [ 0,  0,  0,  0,  0,  0,  0, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2,
          -2, -2, -2, -2, -3, -3, -3, -3, -3, -3, -3, -4, -4, -4, -4, -4, -4,
          -4, -5, -5, -5, -5, -5, -5, -5, -6, -6, -6, -6, -6, -6, -6],
         [ 0,  0,  0,  0,  0,  0,  0, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2,
          -2, -2, -2, -2, -3, -3, -3, -3, -3, -3, -3, -4, -4, -4, -4, -4, -4,
          -4, -5, -5, -5, -5, -5, -5, -5, -6, -6, -6, -6, -6, -6, -6],
          ...
           4,  4,  4,  4,  3,  3,  3,  3,  3,  3,  3,  2,  2,  2,  2,  2,  2,
           2,  1,  1,  1,  1,  1,  1,  1,  0,  0,  0,  0,  0,  0,  0],
         [ 6,  6,  6,  6,  6,  6,  6,  5,  5,  5,  5,  5,  5,  5,  4,  4,  4,
           4,  4,  4,  4,  3,  3,  3,  3,  3,  3,  3,  2,  2,  2,  2,  2,  2,
           2,  1,  1,  1,  1,  1,  1,  1,  0,  0,  0,  0,  0,  0,  0]],

        [[ 0, -1, -2, -3, -4, -5, -6,  0, -1, -2, -3, -4, -5, -6,  0, -1, -2,
          -3, -4, -5, -6,  0, -1, -2, -3, -4, -5, -6,  0, -1, -2, -3, -4, -5,
          -6,  0, -1, -2, -3, -4, -5, -6,  0, -1, -2, -3, -4, -5, -6],
         [ 1,  0, -1, -2, -3, -4, -5,  1,  0, -1, -2, -3, -4, -5,  1,  0, -1,
          -2, -3, -4, -5,  1,  0, -1, -2, -3, -4, -5,  1,  0, -1, -2, -3, -4,
          ...
         [ 5,  4,  3,  2,  1,  0, -1,  5,  4,  3,  2,  1,  0, -1,  5,  4,  3,
           2,  1,  0, -1,  5,  4,  3,  2,  1,  0, -1,  5,  4,  3,  2,  1,  0,
          -1,  5,  4,  3,  2,  1,  0, -1,  5,  4,  3,  2,  1,  0, -1],
         [ 6,  5,  4,  3,  2,  1,  0,  6,  5,  4,  3,  2,  1,  0,  6,  5,  4,
           3,  2,  1,  0,  6,  5,  4,  3,  2,  1,  0,  6,  5,  4,  3,  2,  1,
           0,  6,  5,  4,  3,  2,  1,  0,  6,  5,  4,  3,  2,  1,  0]]])

relative_coords的shape是torch.Size([2, 49, 49])。

针对relative_coords的第[2,0,49]的数值,用图示所示就是下图所示,以蓝色点为参考点,其他点相对参考点的距离。

然后以黄色点为参考点,其他点相对参考点的距离。

剩下的依次类推。

整体就是知乎文章图中这部分

的扩展。

4. 将shape为[2,49,49]relative_coords的49个不同参考点的相对距离值拉成一维

relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2

此操作对应示例中的

经过处理后,relative_coords的shape是[49, 49, 2]。他的值可以用下面的图示表示:

即将以每一个参考点来说,其他位置的点的相对距离,都放在一行上。relative_coords的值是:

tensor([[[ 0,  0],
         [ 0, -1],
         [ 0, -2],
         [ 0, -3],
         [ 0, -4],
         [ 0, -5],
         [ 0, -6],
         [-1,  0],
         [-1, -1],
         [-1, -2],
         [-1, -3],
         [-1, -4],
         [-1, -5],
         [-1, -6],
         [-2,  0],
         [-2, -1],
         [-2, -2],
         [-2, -3],
         [-2, -4],
         [-2, -5],
         [-2, -6],
         [-3,  0],
         [-3, -1],
         [-3, -2],
         [-3, -3],
         [-3, -4],
         [-3, -5],
         [-3, -6],
         [-4,  0],
         [-4, -1],
         [-4, -2],
         [-4, -3],
         [-4, -4],
         [-4, -5],
         [-4, -6],
         [-5,  0],
         [-5, -1],
         [-5, -2],
         [-5, -3],
         [-5, -4],
         [-5, -5],
         [-5, -6],
         [-6,  0],
         [-6, -1],
         [-6, -2],
         [-6, -3],
         [-6, -4],
         [-6, -5],
         [-6, -6]],

        [[ 0,  1],
         [ 0,  0],
        ...
         [ 0,  1],
         [ 0,  0],
         [ 0, -1]],

        [[ 6,  6],
         [ 6,  5],
         [ 6,  4],
         [ 6,  3],
         [ 6,  2],
         [ 6,  1],
         [ 6,  0],
         [ 5,  6],
         [ 5,  5],
         [ 5,  4],
         [ 5,  3],
         [ 5,  2],
         [ 5,  1],
         [ 5,  0],
         [ 4,  6],
         [ 4,  5],
         [ 4,  4],
         [ 4,  3],
         [ 4,  2],
         [ 4,  1],
         [ 4,  0],
         [ 3,  6],
         [ 3,  5],
         [ 3,  4],
         [ 3,  3],
         [ 3,  2],
         [ 3,  1],
         [ 3,  0],
         [ 2,  6],
         [ 2,  5],
         [ 2,  4],
         [ 2,  3],
         [ 2,  2],
         [ 2,  1],
         [ 2,  0],
         [ 1,  6],
         [ 1,  5],
         [ 1,  4],
         [ 1,  3],
         [ 1,  2],
         [ 1,  1],
         [ 1,  0],
         [ 0,  6],
         [ 0,  5],
         [ 0,  4],
         [ 0,  3],
         [ 0,  2],
         [ 0,  1],
         [ 0,  0]]])

5.对横纵坐标值进行数值处理

relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1

relative_coords[:, :, 0]代表的是所有的横坐标,relative_coords[:, :, 1]代表的是所有的纵坐标。

relative_coords[:, :, 0]和relative_coords[:, :, 1]的shape都是[49, 49]。

relative_coords[:, :, 0] = 
tensor([[ 0,  0,  0,  0,  0,  0,  0, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2,
         -2, -2, -2, -3, -3, -3, -3, -3, -3, -3, -4, -4, -4, -4, -4, -4, -4, -5,
         -5, -5, -5, -5, -5, -5, -6, -6, -6, -6, -6, -6, -6],
        [ 0,  0,  0,  0,  0,  0,  0, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2,
         -2, -2, -2, -3, -3, -3, -3, -3, -3, -3, -4, -4, -4, -4, -4, -4, -4, -5,
         -5, -5, -5, -5, -5, -5, -6, -6, -6, -6, -6, -6, -6],
        ...
        [ 6,  6,  6,  6,  6,  6,  6,  5,  5,  5,  5,  5,  5,  5,  4,  4,  4,  4,
          4,  4,  4,  3,  3,  3,  3,  3,  3,  3,  2,  2,  2,  2,  2,  2,  2,  1,
          1,  1,  1,  1,  1,  1,  0,  0,  0,  0,  0,  0,  0],
        [ 6,  6,  6,  6,  6,  6,  6,  5,  5,  5,  5,  5,  5,  5,  4,  4,  4,  4,
          4,  4,  4,  3,  3,  3,  3,  3,  3,  3,  2,  2,  2,  2,  2,  2,  2,  1,
          1,  1,  1,  1,  1,  1,  0,  0,  0,  0,  0,  0,  0],
        [ 6,  6,  6,  6,  6,  6,  6,  5,  5,  5,  5,  5,  5,  5,  4,  4,  4,  4,
          4,  4,  4,  3,  3,  3,  3,  3,  3,  3,  2,  2,  2,  2,  2,  2,  2,  1,
          1,  1,  1,  1,  1,  1,  0,  0,  0,  0,  0,  0,  0]])
relative_coords[:, :, 1] = 
tensor([[ 0, -1, -2, -3, -4, -5, -6,  0, -1, -2, -3, -4, -5, -6,  0, -1, -2, -3,
         -4, -5, -6,  0, -1, -2, -3, -4, -5, -6,  0, -1, -2, -3, -4, -5, -6,  0,
         -1, -2, -3, -4, -5, -6,  0, -1, -2, -3, -4, -5, -6],
        [ 1,  0, -1, -2, -3, -4, -5,  1,  0, -1, -2, -3, -4, -5,  1,  0, -1, -2,
         -3, -4, -5,  1,  0, -1, -2, -3, -4, -5,  1,  0, -1, -2, -3, -4, -5,  1,
          0, -1, -2, -3, -4, -5,  1,  0, -1, -2, -3, -4, -5],
        [ 2,  1,  0, -1, -2, -3, -4,  2,  1,  0, -1, -2, -3, -4,  2,  1,  0, -1,
         -2, -3, -4,  2,  1,  0, -1, -2, -3, -4,  2,  1,  0, -1, -2, -3, -4,  2,
          1,  0, -1, -2, -3, -4,  2,  1,  0, -1, -2, -3, -4],
        ...
        [ 5,  4,  3,  2,  1,  0, -1,  5,  4,  3,  2,  1,  0, -1,  5,  4,  3,  2,
          1,  0, -1,  5,  4,  3,  2,  1,  0, -1,  5,  4,  3,  2,  1,  0, -1,  5,
          4,  3,  2,  1,  0, -1,  5,  4,  3,  2,  1,  0, -1],
        [ 6,  5,  4,  3,  2,  1,  0,  6,  5,  4,  3,  2,  1,  0,  6,  5,  4,  3,
          2,  1,  0,  6,  5,  4,  3,  2,  1,  0,  6,  5,  4,  3,  2,  1,  0,  6,
          5,  4,  3,  2,  1,  0,  6,  5,  4,  3,  2,  1,  0]])

第一步是横纵坐标都加6,避免距离值是负值。

relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1

经过计算后,relative_coords变成:

然后对横坐标乘以2 * self.window_size[1] - 1。

relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1

经过计算后,relative_coords的值为

对横坐标乘以2 * self.window_size[1] - 1后,这里面的最大值为左下角的(156,12),156+12=168. 我们在最开始定义的relative_position_bias_table的shape也是(169, num_heads) 的,正好可以把relative_position_bias_table全部索引到。

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

6. 横纵坐标加和

relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
relative_position_index = 
tensor([[ 84,  83,  82,  81,  80,  79,  78,  71,  70,  69,  68,  67,  66,  65,
          58,  57,  56,  55,  54,  53,  52,  45,  44,  43,  42,  41,  40,  39,
          32,  31,  30,  29,  28,  27,  26,  19,  18,  17,  16,  15,  14,  13,
           6,   5,   4,   3,   2,   1,   0],
        [ 85,  84,  83,  82,  81,  80,  79,  72,  71,  70,  69,  68,  67,  66,
          59,  58,  57,  56,  55,  54,  53,  46,  45,  44,  43,  42,  41,  40,
          33,  32,  31,  30,  29,  28,  27,  20,  19,  18,  17,  16,  15,  14,
           7,   6,   5,   4,   3,   2,   1],
        ...
        [167, 166, 165, 164, 163, 162, 161, 154, 153, 152, 151, 150, 149, 148,
         141, 140, 139, 138, 137, 136, 135, 128, 127, 126, 125, 124, 123, 122,
         115, 114, 113, 112, 111, 110, 109, 102, 101, 100,  99,  98,  97,  96,
          89,  88,  87,  86,  85,  84,  83],
        [168, 167, 166, 165, 164, 163, 162, 155, 154, 153, 152, 151, 150, 149,
         142, 141, 140, 139, 138, 137, 136, 129, 128, 127, 126, 125, 124, 123,
         116, 115, 114, 113, 112, 111, 110, 103, 102, 101, 100,  99,  98,  97,
          90,  89,  88,  87,  86,  85,  84]])

relative_position_index的shape是[49, 49]。这里面最大的值是168,最小的值是0,正好可以对最开始的self.relative_position_bias_table的值全部索引到,self.relative_position_bias_table的shape是[169,4],169个可索引的位置,4个头。

7. forward中的计算

relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
    self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)

将其拆分来看。我们把上面的代码拆分为:

relative_position_index_tmp = self.relative_position_index.view(-1)

relative_position_bias_table_tmp = self.relative_position_bias_table[relative_position_index_tmp]

relative_position_bias = relative_position_bias_table_tmp.view(
    self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH

relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww

attn = attn + relative_position_bias.unsqueeze(0)
  • self.relative_position_index.view(-1)操作

上面已经说到relative_position_index的shape是[49, 49],view(-1)操作会将所有的值放在一个维度,所以假设relative_position_index_tmp = self.relative_position_index.view(-1),relative_position_index_tmp的shape是[2401],relative_position_index_tmp的值是

tensor([ 84,  83,  82,  81,  80,  79,  78,  71,  70,  69,  68,  67,  66,  65,
         58,  57,  56,  55,  54,  53,  52,  45,  44,  43,  42,  41,  40,  39,
         32,  31,  30,  29,  28,  27,  26,  19,  18,  17,  16,  15,  14,  13,
          6,   5,   4,   3,   2,   1,   0,  85,  84,  83,  82,  81,  80,  79,
         72,  71,  70,  69,  68,  67,  66,  59,  58,  57,  56,  55,  54,  53,
         46,  45,  44,  43,  42,  41,  40,  33,  32,  31,  30,  29,  28,  27,
         20,  19,  18,  17,  16,  15,  14,   7,   6,   5,   4,   3,   2,   1,
         86,  85,  84,  83,  82,  81,  80,  73,  72,  71,  70,  69,  68,  67,
         60,  59,  58,  57,  56,  55,  54,  47,  46,  45,  44,  43,  42,  41,
        ...
        128, 127, 126, 125, 124, 123, 122, 115, 114, 113, 112, 111, 110, 109,
        102, 101, 100,  99,  98,  97,  96,  89,  88,  87,  86,  85,  84,  83,
        168, 167, 166, 165, 164, 163, 162, 155, 154, 153, 152, 151, 150, 149,
        142, 141, 140, 139, 138, 137, 136, 129, 128, 127, 126, 125, 124, 123,
        116, 115, 114, 113, 112, 111, 110, 103, 102, 101, 100,  99,  98,  97,
         90,  89,  88,  87,  86,  85,  84], device='cuda:0')
  • self.relative_position_bias_table[relative_position_index_tmp]操作

上面说到,self.relative_position_bias_table的shape是[169,4],在上面也有打印它的值。relative_position_index_tmp的shape是[2401]的索引值,所以此步操作就相当于对self.relative_position_bias_table做2401次索引,每次索引出来的都是shape为[1,4]的tensor,所以
relative_position_bias_table_tmp = self.relative_position_bias_table[relative_position_index_tmp]后,relative_position_bias_table_tmp的shape为[2401, 4],他的部分值展示如下:

tensor([[-2.7874e-02, -3.6342e-02,  2.8827e-02, -2.3673e-02],
        [ 4.1464e-02,  7.6075e-03,  5.3314e-03, -1.4585e-03],
        [-1.4711e-02, -1.3424e-02, -1.3756e-03, -1.3826e-03],
        [-3.6255e-02, -1.9680e-03,  1.6092e-02,  2.3690e-02],
        ...
       [-2.0880e-02, -1.2093e-02,  4.1462e-02,  1.8901e-02],
        [-1.6958e-02, -6.0754e-03, -1.3342e-02, -7.5932e-04],
        [ 8.9761e-03, -1.1548e-02, -2.5437e-02,  1.5095e-02],
        [-2.7874e-02, -3.6342e-02,  2.8827e-02, -2.3673e-02]]
  • relative_position_bias_table_tmp.view(self.window_size[0] * self.window_size[1],self.window_size[0] * self.window_size[1], -1)操作

这一步就是将之前的view(-1)操作再转换回原始尺寸。所以relative_position_bias = relative_position_bias_table_tmp.view(self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1),relative_position_bias的shape是[49, 49, 4].

  • relative_position_bias.permute(2, 0, 1).contiguous()操作

上一步relative_position_bias的shape是[49, 49, 4],经过permute操作后,shape变为[4, 49, 49].

attn = attn + relative_position_bias.unsqueeze(0),attn经过attention计算后,shape是([6400, 4, 49, 49]),这里的relative_position_bias经过unsqueeze一下,正好可以和attn的结果相加。


http://www.kler.cn/a/512918.html

相关文章:

  • 图的基本概念
  • PyCharm+RobotFramework框架实现UDS自动化测试- (四)项目实战0x10
  • Taro+Vue实现图片裁剪组件
  • HTML语言的计算机基础
  • 零信任安全理念
  • k8s集群换IP
  • PHP CRM售后系统小程序
  • 1. 基于图像的三维重建
  • 华为EC6110T-海思Hi3798MV310_安卓9.0_通刷-强刷固件包
  • Nginx正向代理配置
  • 微服务与docker
  • Three.js实现动态水泡效果逐步解析GLSL着色器
  • JavaScript网页设计案例-JavaScript实现数据脱敏的几种解决方式
  • Mac 刷题环境配置
  • C#语言的计算机基础
  • 80篇数据库大数据精华内容
  • 使用 Flask 构建视频转 GIF 工具
  • WinHttp API接口辅助类实现GET POST网络通讯
  • PostgreSQL的学习心得和知识总结(一百六十六)|深入理解PostgreSQL数据库之\watch元命令的实现原理
  • RabbitMq原生接口详解
  • C++编译时间可视化
  • 合并两个img栅格影像——arcgis
  • 解决GB28181对接RTSP倍速播放导致FFmpeg缓冲区满导致花屏问题
  • LangGraph:基于图结构的智能系统开发与实践
  • Java 大视界 -- 深入剖析 Java 在大数据内存管理中的优化策略(49)
  • 数据结构 链表1