【深度学习基础】多层感知机 | 权重衰减
【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ ⌈PyTorch深度学习 ⌋ ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。
【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning。
文章目录
- 一、范数与权重衰减
- 二、高维线性回归
- 三、权重衰减的从零开始实现
- (一)初始化模型参数
- (二)定义 L 2 L_2 L2范数惩罚
- (三)定义训练代码实现
- (四)忽略正则化直接训练
- (五)使用权重衰减
- 四、权重衰减的简洁实现
- 小结
前一节我们描述了过拟合的问题,本节我们将介绍一些正则化模型的技术。我们总是可以通过去收集更多的训练数据来缓解过拟合。但这可能成本很高,耗时颇多,或者完全超出我们的控制,因而在短期内不可能做到。假设我们已经拥有尽可能多的高质量数据,我们便可以将重点放在正则化技术上。
回想一下,在多项式回归的例子(模型选择、欠拟合和过拟合)中,我们可以通过调整拟合多项式的阶数来限制模型的容量。实际上,限制特征的数量是缓解过拟合的一种常用技术。然而,简单地丢弃特征对这项工作来说可能过于生硬。我们继续思考多项式回归的例子,考虑高维输入可能发生的情况。多项式对多变量数据的自然扩展称为单项式(monomials),也可以说是变量幂的乘积。单项式的阶数是幂的和。例如, x 1 2 x 2 x_1^2 x_2 x12x2和 x 3 x 5 2 x_3 x_5^2 x3x52都是3次单项式。
注意,随着阶数 d d d的增长,带有阶数 d d d的项数迅速增加。 给定 k k k个变量,阶数为 d d d的项的个数为 ( k − 1 + d k − 1 ) {k - 1 + d} \choose {k - 1} (k−1k−1+d),即 C k − 1 + d k − 1 = ( k − 1 + d ) ! ( d ) ! ( k − 1 ) ! C^{k-1}_{k-1+d} = \frac{(k-1+d)!}{(d)!(k-1)!} Ck−1+dk−1=(d)!(k−1)!(k−1+d)!。因此即使是阶数上的微小变化,比如从 2 2 2到 3 3 3,也会显著增加我们模型的复杂性。仅仅通过简单的限制特征数量(在多项式回归中体现为限制阶数),可能仍然使模型在过简单和过复杂中徘徊,我们需要一个更细粒度的工具来调整函数的复杂性,使其达到一个合适的平衡位置。
一、范数与权重衰减
在【深度学习基础】预备知识 | 线性代数 中,我们已经描述了 L 2 L_2 L2范数和 L 1 L_1 L1范数,它们是更为一般的 L p L_p Lp范数的特殊情况。
在训练参数化机器学习模型时,权重衰减(weight decay)是最广泛使用的正则化的技术之一,它通常也被称为 L 2 L_2 L2正则化。这项技术通过函数与零的距离来衡量函数的复杂度,因为在所有函数 f f f中,函数 f = 0 f = 0 f=0(所有输入都得到值 0 0 0)在某种意义上是最简单的。但是我们应该如何精确地测量一个函数和零之间的距离呢?没有一个正确的答案。事实上,函数分析和巴拿赫空间理论的研究,都在致力于回答这个问题。
一种简单的方法是通过线性函数
f
(
x
)
=
w
⊤
x
f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x}
f(x)=w⊤x中的权重向量的某个范数来度量其复杂性,例如
∥
w
∥
2
\| \mathbf{w} \|^2
∥w∥2。要保证权重向量比较小,最常用方法是将其范数作为惩罚项加到最小化损失的问题中。将原来的训练目标最小化训练标签上的预测损失,调整为最小化预测损失和惩罚项之和。现在,如果我们的权重向量增长的太大,我们的学习算法可能会更集中于最小化权重范数
∥
w
∥
2
\| \mathbf{w} \|^2
∥w∥2。这正是我们想要的。让我们回顾一下【深度学习基础】线性神经网络 | 线性回归 中的线性回归例子。我们的损失由下式给出:
L
(
w
,
b
)
=
1
n
∑
i
=
1
n
1
2
(
w
⊤
x
(
i
)
+
b
−
y
(
i
)
)
2
(1)
L(\mathbf{w}, b) = \frac{1}{n}\sum_{i=1}^n \frac{1}{2}\left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right)^2 \tag{1}
L(w,b)=n1i=1∑n21(w⊤x(i)+b−y(i))2(1)
回想一下,
x
(
i
)
\mathbf{x}^{(i)}
x(i)是样本
i
i
i的特征,
y
(
i
)
y^{(i)}
y(i)是样本
i
i
i的标签,
(
w
,
b
)
(\mathbf{w}, b)
(w,b)是权重和偏置参数。为了惩罚权重向量的大小,我们必须以某种方式在损失函数中添加
∥
w
∥
2
\| \mathbf{w} \|^2
∥w∥2,但是模型应该如何平衡这个新的额外惩罚的损失?实际上,我们通过正则化常数
λ
\lambda
λ来描述这种权衡,这是一个非负超参数,我们使用验证数据拟合:
L
(
w
,
b
)
+
λ
2
∥
w
∥
2
(2)
L(\mathbf{w}, b) + \frac{\lambda}{2} \|\mathbf{w}\|^2 \tag{2}
L(w,b)+2λ∥w∥2(2)
对于 λ = 0 \lambda = 0 λ=0,我们恢复了原来的损失函数。对于 λ > 0 \lambda > 0 λ>0,我们限制 ∥ w ∥ \| \mathbf{w} \| ∥w∥的大小。这里我们仍然除以 2 2 2:当我们取一个二次函数的导数时, 2 2 2和 1 / 2 1/2 1/2会抵消,以确保更新表达式看起来既漂亮又简单。为什么在这里我们使用平方范数而不是标准范数(即欧几里得距离)?我们这样做是为了便于计算。通过平方 L 2 L_2 L2范数,我们去掉平方根,留下权重向量每个分量的平方和。这使得惩罚的导数很容易计算:导数的和等于和的导数。
此外,为什么我们首先使用 L 2 L_2 L2范数,而不是 L 1 L_1 L1范数。事实上,这个选择在整个统计领域中都是有效的和受欢迎的。 L 2 L_2 L2正则化线性模型构成经典的岭回归(ridge regression)算法, L 1 L_1 L1正则化线性回归是统计学中类似的基本模型,通常被称为套索回归(lasso regression)。使用 L 2 L_2 L2范数的一个原因是它对权重向量的大分量施加了巨大的惩罚。这使得我们的学习算法偏向于在大量特征上均匀分布权重的模型。在实践中,这可能使它们对单个变量中的观测误差更为稳定。相比之下, L 1 L_1 L1惩罚会导致模型将权重集中在一小部分特征上,而将其他权重清除为零。这称为特征选择(feature selection),这可能是其他场景下需要的。
使用与随机梯度下降中的相同符号,
L
2
L_2
L2正则化回归的小批量随机梯度下降更新如下式:
w
←
(
1
−
η
λ
)
w
−
η
∣
B
∣
∑
i
∈
B
x
(
i
)
(
w
⊤
x
(
i
)
+
b
−
y
(
i
)
)
(3)
\begin{aligned} \mathbf{w} & \leftarrow \left(1- \eta\lambda \right) \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \mathbf{x}^{(i)} \left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right) \tag{3} \end{aligned}
w←(1−ηλ)w−∣B∣ηi∈B∑x(i)(w⊤x(i)+b−y(i))(3)
根据之前章节所讲的,我们根据估计值与观测值之间的差异来更新 w \mathbf{w} w。然而,我们同时也在试图将 w \mathbf{w} w的大小缩小到零。这就是为什么这种方法有时被称为权重衰减。我们仅考虑惩罚项,优化算法在训练的每一步衰减权重。与特征选择相比,权重衰减为我们提供了一种连续的机制来调整函数的复杂度。较小的 λ \lambda λ值对应较少约束的 w \mathbf{w} w,而较大的 λ \lambda λ值对 w \mathbf{w} w的约束更大。
是否对相应的偏置 b 2 b^2 b2进行惩罚在不同的实践中会有所不同,在神经网络的不同层中也会有所不同。通常,网络输出层的偏置项不会被正则化。
二、高维线性回归
我们通过一个简单的例子来演示权重衰减。
%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
首先,我们像以前一样生成一些数据,生成公式如下:
y
=
0.05
+
∑
i
=
1
d
0.01
x
i
+
ϵ
,
其中
ϵ
∼
N
(
0
,
0.0
1
2
)
(4)
y = 0.05 + \sum_{i = 1}^d 0.01 x_i + \epsilon, \quad \text{其中} \epsilon \sim \mathcal{N}(0, 0.01^2) \tag{4}
y=0.05+i=1∑d0.01xi+ϵ,其中ϵ∼N(0,0.012)(4)
我们选择标签是关于输入的线性函数。标签同时被均值为0,标准差为0.01高斯噪声破坏。为了使过拟合的效果更加明显,我们可以将问题的维数增加到 d = 200 d = 200 d=200,并使用一个只包含20个样本的小训练集。
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
三、权重衰减的从零开始实现
下面我们将从头开始实现权重衰减,只需将 L 2 L_2 L2的平方惩罚添加到原始目标函数中。
(一)初始化模型参数
首先,我们将定义一个函数来随机初始化模型参数。
def init_params():
w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
return [w, b]
(二)定义 L 2 L_2 L2范数惩罚
实现这一惩罚最方便的方法是对所有项求平方后并将它们求和。
def l2_penalty(w):
return torch.sum(w.pow(2)) / 2
(三)定义训练代码实现
下面的代码将模型拟合训练数据集,并在测试数据集上进行评估。从线性神经网络以来,线性网络和平方损失没有变化,所以我们通过d2l.linreg
和d2l.squared_loss
导入它们。唯一的变化是损失现在包括了惩罚项。
def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
# 增加了L2范数惩罚项,
# 广播机制使l2_penalty(w)成为一个长度为batch_size的向量
l = loss(net(X), y) + lambd * l2_penalty(w)
l.sum().backward()
d2l.sgd([w, b], lr, batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
print('w的L2范数是:', torch.norm(w).item())
(四)忽略正则化直接训练
我们现在用lambd = 0
禁用权重衰减后运行这个代码。注意,这里训练误差有了减少,但测试误差没有减少,这意味着出现了严重的过拟合。
train(lambd=0)
(五)使用权重衰减
下面,我们使用权重衰减来运行代码。注意,在这里训练误差增大,但测试误差减小。这正是我们期望从正则化中得到的效果。
train(lambd=3)
四、权重衰减的简洁实现
由于权重衰减在神经网络优化中很常用,深度学习框架为了便于我们使用权重衰减,将权重衰减集成到优化算法中,以便与任何损失函数结合使用。此外,这种集成还有计算上的好处,允许在不增加任何额外的计算开销的情况下向算法中添加权重衰减。由于更新的权重衰减部分仅依赖于每个参数的当前值,因此优化器必须至少接触每个参数一次。
在下面的代码中,我们在实例化优化器时直接通过weight_decay
指定weight decay超参数。默认情况下,PyTorch同时衰减权重和偏移。这里我们只为权重设置了weight_decay
,所以偏置参数
b
b
b不会衰减。
def train_concise(wd):
net = nn.Sequential(nn.Linear(num_inputs, 1))
for param in net.parameters():
param.data.normal_()
loss = nn.MSELoss(reduction='none')
num_epochs, lr = 100, 0.003
# 偏置参数没有衰减
trainer = torch.optim.SGD([{"params":net[0].weight,'weight_decay': wd}, {"params":net[0].bias}], lr=lr)
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
trainer.zero_grad()
l = loss(net(X), y)
l.mean().backward()
trainer.step()
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
print('w的L2范数:', net[0].weight.norm().item())
这些图看起来和我们从零开始实现权重衰减时的图相同。然而,它们运行得更快,更容易实现。对于更复杂的问题,这一好处将变得更加明显。
train_concise(0)
train_concise(3)
到目前为止,我们只接触到一个简单线性函数的概念。此外,由什么构成一个简单的非线性函数可能是一个更复杂的问题。例如,再生核希尔伯特空间(RKHS)允许在非线性环境中应用为线性函数引入的工具。不幸的是,基于RKHS的算法往往难以应用到大型、高维的数据。在本专栏中,我们将默认使用简单的启发式方法,即在深层网络的所有层上应用权重衰减。
小结
- 正则化是处理过拟合的常用方法:在训练集的损失函数中加入惩罚项,以降低学习到的模型的复杂度。
- 保持模型简单的一个特别的选择是使用 L 2 L_2 L2惩罚的权重衰减。这会导致学习算法更新步骤中的权重衰减。
- 权重衰减功能在深度学习框架的优化器中提供。
- 在同一训练代码实现中,不同的参数集可以有不同的更新行为。