0基础跟德姆(dom)一起学AI 自然语言处理20-模型构建
1 模型构建介绍
通过上面的小节, 我们已经完成了所有组成部分的实现, 接下来就来实现完整的编码器-解码器结构.
- Transformer总体架构图:
2 编码器-解码器结构的代码实现
EncoderDecoder函数完成编码解码的子任务,就是把编码和解码的流程进行封装实现。
# 编码解码内部函数类 EncoderDecoder 实现分析
# init函数 (self, encoder, decoder, source_embed, target_embed, generator)
# 5个成员属性赋值 encoder 编码器对象 decoder 解码器对象 source_embed source端词嵌入层对象
# target_embed target端词嵌入层对象 generator 输出层对象
# forward函数 (self, source, target, source_mask, target_mask)
# 1 编码 s.encoder(self.src_embed(source), source_mask)
# 2 解码 s.decoder(self.tgt_embed(target), memory, source_mask, target_mask)
# 3 输出 s.generator()
# 使用EncoderDecoder类来实现编码器-解码器结构
class EncoderDecoder(nn.Module):
def __init__(self, encoder, decoder, source_embed, target_embed, generator):
"""初始化函数中有5个参数, 分别是编码器对象, 解码器对象,
源数据嵌入函数, 目标数据嵌入函数, 以及输出部分的类别生成器对象
"""
super(EncoderDecoder, self).__init__()
# 将参数传入到类中
self.encoder = encoder
self.decoder = decoder
self.src_embed = source_embed
self.tgt_embed = target_embed
self.generator = generator
def forward(self, source, target, source_mask, target_mask):
"""在forward函数中,有四个参数, source代表源数据, target代表目标数据,
source_mask和target_mask代表对应的掩码张量"""
# 在函数中, 将source, source_mask传入编码函数, 得到结果后,
# 与source_mask,target,和target_mask一同传给解码函数
return self.generator(self.decode(self.encode(source, source_mask),
source_mask, target, target_mask))
def encode(self, source, source_mask):
"""编码函数, 以source和source_mask为参数"""
# 使用src_embed对source做处理, 然后和source_mask一起传给self.encoder
return self.encoder(self.src_embed(source), source_mask)
def decode(self, memory, source_mask, target, target_mask):
"""解码函数, 以memory即编码器的输出, source_mask, target, target_mask为参数"""
# 使用tgt_embed对target做处理, 然后和source_mask, target_mask, memory一起传给self.decoder
return self.decoder(self.tgt_embed(target), memory, source_mask, target_mask)
- 实例化参数
vocab_size = 1000
d_model = 512
encoder = en
decoder = de
source_embed = nn.Embedding(vocab_size, d_model)
target_embed = nn.Embedding(vocab_size, d_model)
generator = gen
- 输入参数:
# 假设源数据与目标数据相同, 实际中并不相同
source = target = Variable(torch.LongTensor([[100, 2, 421, 508], [491, 998, 1, 221]]))
# 假设src_mask与tgt_mask相同,实际中并不相同
source_mask = target_mask = Variable(torch.zeros(8, 4, 4))
- 调用:
ed = EncoderDecoder(encoder, decoder, source_embed, target_embed, generator)
ed_result = ed(source, target, source_mask, target_mask)
print(ed_result)
print(ed_result.shape)
- 输出效果:
tensor([[[ 0.2102, -0.0826, -0.0550, ..., 1.5555, 1.3025, -0.6296],
[ 0.8270, -0.5372, -0.9559, ..., 0.3665, 0.4338, -0.7505],
[ 0.4956, -0.5133, -0.9323, ..., 1.0773, 1.1913, -0.6240],
[ 0.5770, -0.6258, -0.4833, ..., 0.1171, 1.0069, -1.9030]],
[[-0.4355, -1.7115, -1.5685, ..., -0.6941, -0.1878, -0.1137],
[-0.8867, -1.2207, -1.4151, ..., -0.9618, 0.1722, -0.9562],
[-0.0946, -0.9012, -1.6388, ..., -0.2604, -0.3357, -0.6436],
[-1.1204, -1.4481, -1.5888, ..., -0.8816, -0.6497, 0.0606]]],
grad_fn=<AddBackward0>)
torch.Size([2, 4, 512])
- 接着将基于以上结构构建用于训练的模型.
3 Tansformer模型构建过程的代码分析
make_model函数初始化一个一个组件对象(轮子对象),调用EncoderDecoder()函数
# make_model函数实现思路分析
# 函数原型 (source_vocab, target_vocab, N=6, d_model=512, d_ff=2048, head=8, dropout=0.1)
# 实例化多头注意力层对象 attn
# 实例化前馈全连接对象ff
# 实例化位置编码器对象position
# 构建 EncoderDecoder对象(Encoder对象, Decoder对象,
# source端输入部分nn.Sequential(),
# target端输入部分nn.Sequential(),
# 线性层输出Generator)
# 对模型参数初始化 nn.init.xavier_uniform_(p)
# 注意使用 c = copy.deepcopy
# 返回model
def make_model(source_vocab, target_vocab, N=6,
d_model=512, d_ff=2048, head=8, dropout=0.1):
c = copy.deepcopy
# 实例化多头注意力层对象
attn = MultiHeadedAttention(head=8, embedding_dim= 512, dropout=dropout)
# 实例化前馈全连接对象ff
ff = PositionwiseFeedForward(d_model=d_model, d_ff=d_ff, dropout=dropout)
# 实例化 位置编码器对象position
position = PositionalEncoding(d_model=d_model, dropout=dropout)
# 构建 EncoderDecoder对象
model = EncoderDecoder(
# 编码器对象
Encoder( EncoderLayer(d_model, c(attn), c(ff), dropout), N),
# 解码器对象
Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff),dropout), N),
# 词嵌入层 位置编码器层容器
nn.Sequential(Embeddings(d_model, source_vocab), c(position)),
# 词嵌入层 位置编码器层容器
nn.Sequential(Embeddings(d_model, target_vocab), c(position)),
# 输出层对象
Generator(d_model, target_vocab))
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model
- nn.init.xavier_uniform演示:
# 结果服从均匀分布U(-a, a)
>>> w = torch.empty(3, 5)
>>> w = nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))
>>> w
tensor([[-0.7742, 0.5413, 0.5478, -0.4806, -0.2555],
[-0.8358, 0.4673, 0.3012, 0.3882, -0.6375],
[ 0.4622, -0.0794, 0.1851, 0.8462, -0.3591]])
- 函数调用
def dm_test_make_model():
source_vocab = 500
target_vocab = 1000
N = 6
my_transform_modelobj = make_model(source_vocab, target_vocab,
N=6, d_model=512, d_ff=2048, head=8, dropout=0.1)
print(my_transform_modelobj)
# 假设源数据与目标数据相同, 实际中并不相同
source = target = Variable(torch.LongTensor([[1, 2, 3, 8], [3, 4, 1, 8]]))
# 假设src_mask与tgt_mask相同,实际中并不相同
source_mask = target_mask = Variable(torch.zeros(8, 4, 4)) #
mydata = my_transform_modelobj(source, target, source_mask, target_mask)
print('mydata.shape--->', mydata.shape)
print('mydata--->', mydata)
- 输出效果1
mydata.shape---> torch.Size([2, 4, 1000])
mydata---> tensor([[[-5.7188, -7.4484, -8.0710, ..., -9.1009, -7.7561, -6.1054],
[-6.7604, -8.1813, -8.1233, ..., -7.7539, -8.1921, -7.0365],
[-6.6139, -8.4309, -8.0176, ..., -8.9429, -8.2295, -6.8527],
[-6.6079, -8.4657, -8.2147, ..., -8.8127, -6.9746, -6.1084]],
[[-6.7538, -7.9822, -7.6833, ..., -8.8334, -7.0283, -7.4291],
[-6.7661, -7.6868, -8.0763, ..., -8.6204, -7.7191, -7.6031],
[-5.9538, -7.0344, -7.3635, ..., -8.5833, -7.5199, -6.9852],
[-6.6039, -8.2063, -8.2185, ..., -8.5063, -6.9020, -7.1619]]],
grad_fn=<LogSoftmaxBackward0>)
- 输出效果2
# 根据Transformer结构图构建的最终模型结构
EncoderDecoder(
(encoder): Encoder(
(layers): ModuleList(
(0): EncoderLayer(
(self_attn): MultiHeadedAttention(
(linears): ModuleList(
(0): Linear(in_features=512, out_features=512)
(1): Linear(in_features=512, out_features=512)
(2): Linear(in_features=512, out_features=512)
(3): Linear(in_features=512, out_features=512)
)
(dropout): Dropout(p=0.1)
)
(feed_forward): PositionwiseFeedForward(
(w_1): Linear(in_features=512, out_features=2048)
(w_2): Linear(in_features=2048, out_features=512)
(dropout): Dropout(p=0.1)
)
(sublayer): ModuleList(
(0): SublayerConnection(
(norm): LayerNorm(
)
(dropout): Dropout(p=0.1)
)
(1): SublayerConnection(
(norm): LayerNorm(
)
(dropout): Dropout(p=0.1)
)
)
)
(1): EncoderLayer(
(self_attn): MultiHeadedAttention(
(linears): ModuleList(
(0): Linear(in_features=512, out_features=512)
(1): Linear(in_features=512, out_features=512)
(2): Linear(in_features=512, out_features=512)
(3): Linear(in_features=512, out_features=512)
)
(dropout): Dropout(p=0.1)
)
(feed_forward): PositionwiseFeedForward(
(w_1): Linear(in_features=512, out_features=2048)
(w_2): Linear(in_features=2048, out_features=512)
(dropout): Dropout(p=0.1)
)
(sublayer): ModuleList(
(0): SublayerConnection(
(norm): LayerNorm(
)
(dropout): Dropout(p=0.1)
)
(1): SublayerConnection(
(norm): LayerNorm(
)
(dropout): Dropout(p=0.1)
)
)
)
)
(norm): LayerNorm(
)
)
(decoder): Decoder(
(layers): ModuleList(
(0): DecoderLayer(
(self_attn): MultiHeadedAttention(
(linears): ModuleList(
(0): Linear(in_features=512, out_features=512)
(1): Linear(in_features=512, out_features=512)
(2): Linear(in_features=512, out_features=512)
(3): Linear(in_features=512, out_features=512)
)
(dropout): Dropout(p=0.1)
)
(src_attn): MultiHeadedAttention(
(linears): ModuleList(
(0): Linear(in_features=512, out_features=512)
(1): Linear(in_features=512, out_features=512)
(2): Linear(in_features=512, out_features=512)
(3): Linear(in_features=512, out_features=512)
)
(dropout): Dropout(p=0.1)
)
(feed_forward): PositionwiseFeedForward(
(w_1): Linear(in_features=512, out_features=2048)
(w_2): Linear(in_features=2048, out_features=512)
(dropout): Dropout(p=0.1)
)
(sublayer): ModuleList(
(0): SublayerConnection(
(norm): LayerNorm(
)
(dropout): Dropout(p=0.1)
)
(1): SublayerConnection(
(norm): LayerNorm(
)
(dropout): Dropout(p=0.1)
)
(2): SublayerConnection(
(norm): LayerNorm(
)
(dropout): Dropout(p=0.1)
)
)
)
(1): DecoderLayer(
(self_attn): MultiHeadedAttention(
(linears): ModuleList(
(0): Linear(in_features=512, out_features=512)
(1): Linear(in_features=512, out_features=512)
(2): Linear(in_features=512, out_features=512)
(3): Linear(in_features=512, out_features=512)
)
(dropout): Dropout(p=0.1)
)
(src_attn): MultiHeadedAttention(
(linears): ModuleList(
(0): Linear(in_features=512, out_features=512)
(1): Linear(in_features=512, out_features=512)
(2): Linear(in_features=512, out_features=512)
(3): Linear(in_features=512, out_features=512)
)
(dropout): Dropout(p=0.1)
)
(feed_forward): PositionwiseFeedForward(
(w_1): Linear(in_features=512, out_features=2048)
(w_2): Linear(in_features=2048, out_features=512)
(dropout): Dropout(p=0.1)
)
(sublayer): ModuleList(
(0): SublayerConnection(
(norm): LayerNorm(
)
(dropout): Dropout(p=0.1)
)
(1): SublayerConnection(
(norm): LayerNorm(
)
(dropout): Dropout(p=0.1)
)
(2): SublayerConnection(
(norm): LayerNorm(
)
(dropout): Dropout(p=0.1)
)
)
)
)
(norm): LayerNorm(
)
)
(src_embed): Sequential(
(0): Embeddings(
(lut): Embedding(11, 512)
)
(1): PositionalEncoding(
(dropout): Dropout(p=0.1)
)
)
(tgt_embed): Sequential(
(0): Embeddings(
(lut): Embedding(11, 512)
)
(1): PositionalEncoding(
(dropout): Dropout(p=0.1)
)
)
(generator): Generator(
(proj): Linear(in_features=512, out_features=11)
)
)