python实战(十五)——中文手写体数字图像CNN分类
一、任务背景
本次python实战,我们使用来自Kaggle的数据集《Chinese MNIST》进行CNN分类建模,不同于经典的MNIST数据集,我们这次使用的数据集是汉字手写体数字。除了常规的汉字“零”到“九”之外还多了“十”、“百”、“千”、“万”、“亿”,共15种汉字数字。
二、python建模
1、数据读取
首先,读取jpg数据文件,可以看到总共有15000张图像数据。
import pandas as pd
import os
path = '/kaggle/input/chinese-mnist/data/data/'
files = os.listdir(path)
print('数据总量:', len(files))
我们也可以打印一张图片出来看看。
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
# 定义图片路径
image_path = path+files[3]
# 加载图片
image = mpimg.imread(image_path)
# 绘制图片
plt.figure(figsize=(3, 3))
plt.imshow(image)
plt.axis('off') # 关闭坐标轴
plt.show()
2、数据集构建
加载必要的库以便后续使用,再定义一些超参数。
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
from torch.utils.data import Dataset, DataLoader, random_split
from sklearn.metrics import precision_score, recall_score, f1_score
# 超参数
batch_size = 64
learning_rate = 0.01
num_epochs = 5
# 数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
这里,我们看一看数据集介绍就会知道图片名称及其含义,需要从chinese_mnist.csv文件中根据图片名称中的几个数字来确定图片对应的标签。
# 获取所有图片文件的路径
all_images = [os.path.join(path, img) for img in os.listdir(path) if img.endswith('.jpg')]
# 读取索引-标签对应关系csv文件,并将'suite_id', 'sample_id', 'code'设置为索引列便于查找
index_df = pd.read_csv('/kaggle/input/chinese-mnist/chinese_mnist.csv')
index_df.set_index(['suite_id', 'sample_id', 'code'], inplace=True)
# 定义函数,根据各索引取值定位图片对应的数值标签value
def get_label_from_index(filename, index_df):
suite_id, sample_id, code = map(int, filename.split('.')[0].split('_')[1:])
return index_df.loc[(suite_id, sample_id, code), 'value']
# 构建value值对应的标签序号,用于模型训练
label_dic = {0:0, 1:1, 2:2, 3:3, 4:4, 5:5, 6:6, 7:7, 8:8, 9:9, 10:10, 100:11, 1000:12, 10000:13, 100000000:14}
# 获取所有图片的标签并转化为标签序号
all_labels = [get_label_from_index(os.path.basename(img), index_df) for img in all_images]
all_labels = [label_dic[li] for li in all_labels]
# 将图片路径和标签分成训练集和测试集
train_images, test_images, train_labels, test_labels = train_test_split(all_images, all_labels, test_size=0.2, random_state=2024)
下面定义数据集类并完成数据的加载。
# 自定义数据集类
class CustomDataset(Dataset):
def __init__(self, image_paths, labels, transform=None):
self.image_paths = image_paths
self.labels = labels
self.transform = transform
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
image = Image.open(self.image_paths[idx]).convert('L') # 转换为灰度图像
label = self.labels[idx]
if self.transform:
image = self.transform(image)
return image, label
# 创建训练集和测试集数据集
train_dataset = CustomDataset(train_images, train_labels, transform=transform)
test_dataset = CustomDataset(test_images, test_labels, transform=transform)
# 创建数据加载器
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)
# 打印一些信息
print(f'训练集样本数: {len(train_dataset)}')
print(f'测试集样本数: {len(test_dataset)}')
3、模型构建
我们构建一个包含两层卷积层和池化层的CNN并且在池化层中使用最大池化的方式。
# 定义CNN模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.fc1 = nn.Linear(64 * 16 * 16, 128)
self.fc2 = nn.Linear(128, 15)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 64 * 16 * 16)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
4、模型实例化及训练
下面我们对模型进行实例化并定义criterion和optimizer。
# 初始化模型、损失函数和优化器
model = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
定义训练的代码并调用代码训练模型。
from tqdm import tqdm
# 训练模型
def train(model, train_loader, criterion, optimizer, epochs):
model.train()
running_loss = 0.0
for epoch in range(epochs):
for data, target in tqdm(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f'Epoch [{epoch + 1}], Loss: {running_loss / len(train_loader):.4f}')
running_loss = 0.0
train(model, train_loader, criterion, optimizer, num_epochs)
5、测试模型
定义模型测试代码,调用代码看指标可知我们所构建的CNN模型表现还不错。
# 测试模型
def test(model, test_loader, criterion):
model.eval()
test_loss = 0
correct = 0
all_preds = []
all_targets = []
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
all_preds.extend(pred.cpu().numpy())
all_targets.extend(target.cpu().numpy())
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
precision = precision_score(all_targets, all_preds, average='macro')
recall = recall_score(all_targets, all_preds, average='macro')
f1 = f1_score(all_targets, all_preds, average='macro')
print(f'Test Loss: {test_loss:.4f}, Accuracy: {accuracy:.2f}%, Precision: {precision:.4f}, Recall: {recall:.4f}, F1 Score: {f1:.4f}')
test(model, test_loader, criterion)
三、完整代码
import pandas as pd
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader, random_split
from sklearn.metrics import precision_score, recall_score, f1_score
path = '/kaggle/input/chinese-mnist/data/data/'
files = os.listdir(path)
print('数据总量:', len(files))
# 超参数
batch_size = 64
learning_rate = 0.01
num_epochs = 5
# 数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# 获取所有图片文件的路径
all_images = [os.path.join(path, img) for img in os.listdir(path) if img.endswith('.jpg')]
# 读取索引-标签对应关系csv文件,并将'suite_id', 'sample_id', 'code'设置为索引列便于查找
index_df = pd.read_csv('/kaggle/input/chinese-mnist/chinese_mnist.csv')
index_df.set_index(['suite_id', 'sample_id', 'code'], inplace=True)
# 定义函数,根据各索引取值定位图片对应的数值标签value
def get_label_from_index(filename, index_df):
suite_id, sample_id, code = map(int, filename.split('.')[0].split('_')[1:])
return index_df.loc[(suite_id, sample_id, code), 'value']
# 构建value值对应的标签序号,用于模型训练
label_dic = {0:0, 1:1, 2:2, 3:3, 4:4, 5:5, 6:6, 7:7, 8:8, 9:9, 10:10, 100:11, 1000:12, 10000:13, 100000000:14}
# 获取所有图片的标签并转化为标签序号
all_labels = [get_label_from_index(os.path.basename(img), index_df) for img in all_images]
all_labels = [label_dic[li] for li in all_labels]
# 将图片路径和标签分成训练集和测试集
train_images, test_images, train_labels, test_labels = train_test_split(all_images, all_labels, test_size=0.2, random_state=2024)
# 自定义数据集类
class CustomDataset(Dataset):
def __init__(self, image_paths, labels, transform=None):
self.image_paths = image_paths
self.labels = labels
self.transform = transform
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
image = Image.open(self.image_paths[idx]).convert('L') # 转换为灰度图像
label = self.labels[idx]
if self.transform:
image = self.transform(image)
return image, label
# 创建训练集和测试集数据集
train_dataset = CustomDataset(train_images, train_labels, transform=transform)
test_dataset = CustomDataset(test_images, test_labels, transform=transform)
# 创建数据加载器
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)
# 打印信息
print(f'训练集样本数: {len(train_dataset)}')
print(f'测试集样本数: {len(test_dataset)}')
# 定义CNN模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.fc1 = nn.Linear(64 * 16 * 16, 128)
self.fc2 = nn.Linear(128, 15)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 64 * 16 * 16)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 初始化模型、损失函数和优化器
model = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
# 训练模型
def train(model, train_loader, criterion, optimizer, epochs):
model.train()
running_loss = 0.0
for epoch in range(epochs):
for data, target in tqdm(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f'Epoch [{epoch + 1}], Loss: {running_loss / len(train_loader):.4f}')
running_loss = 0.0
train(model, train_loader, criterion, optimizer, num_epochs)
# 测试模型
def test(model, test_loader, criterion):
model.eval()
test_loss = 0
correct = 0
all_preds = []
all_targets = []
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
all_preds.extend(pred.cpu().numpy())
all_targets.extend(target.cpu().numpy())
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
precision = precision_score(all_targets, all_preds, average='macro')
recall = recall_score(all_targets, all_preds, average='macro')
f1 = f1_score(all_targets, all_preds, average='macro')
print(f'Test Loss: {test_loss:.4f}, Accuracy: {accuracy:.2f}%, Precision: {precision:.4f}, Recall: {recall:.4f}, F1 Score: {f1:.4f}')
test(model, test_loader, criterion)
四、总结
本文基于汉字手写体数字图像进行了CNN分类实战,CNN作为图像处理的经典模型,展现出了它强大的图像特征提取能力,结合更加复杂的模型框架CNN还可用于高精度人脸识别、物体识别等任务中。