当前位置: 首页 > article >正文

【统计的思想】假设检验(二)

假设检验是根据人为设定的显著水平,对被测对象的总体质量特性进行统计推断的方法。

如果我们通过假设检验否定了零假设,只是说明在设定的显著水平下,零假设成立的概率比较小,并不是说零假设就肯定不成立。如果零假设事实上是成立的,我们就犯了弃真错误,也就是第一类错误。这种错误出现的可能性,叫做弃真概率。

如果我们通过假设检验接受了零假设,也只是因为测试结果和期望的差异并不显著,并不足以推翻零假设,并不是说零假设就肯定成立。如果零假设事实上并不成立,我们就犯了取伪错误,也就是第二类错误。这种错误出现的可能性,叫做取伪概率。

显然,如果减小显著水平,就更不容易推翻零假设,所以弃真概率会变小,但相应的取伪概率就会变大;而增大显著水平的话,就更容易推翻零假设,取伪概率会变小,但弃真概率就会变大。

那怎么才能同时减小弃真概率和取伪概率呢?一般要在减小显著水平的同时,增加样本量。来看一个例子。

很多人以为结核病已经绝迹了,实际上并不是。2023年世卫组织发布的报告说,结核病发病率高达万分之5.2,仍然是世界上最常见的传染病之一。结核病的传统药物治愈率是60%。最近有一家药厂研制了一种新药,随机找了50名患者做临床试验,治愈率达到了70%。那么,我们能不能下结论说,这种新药的药效比传统药物更好呢?

我们来做假设检验:

  1. 建立零假设。假设新药的药效跟传统药没有差别,治愈率还是60%;

  2. 设定显著水平。取α=0.01;

  3. 计算测试结果的发生概率。如果新药的治愈率是60%,就是说每个人被治愈的可能性都是60%,那么50人里有70%的人、也就是35人被治愈的概率是多少呢?可以用二项分布来计算,算出来的概率是0.04;

  4. 统计推断。由于测试结果的发生概率比显著水平0.01要大,所以我们会接受零假设,结论是新药跟传统药没有显著差别。

但是如果我们扩大临床试验的规模,把人数增加到120人,样本治愈率还是70%,用同样的方法算下来,概率是0.006,就比显著水平0.01要小了,于是零假设就被推翻了,结论就会变成“新药的药效要明显好于传统药物”。

这两个结论,哪一个更靠谱呢?很明显是后者。因为样本量越大, 样本就越能代表总体,抽样误差就越小。把样本量增大到120之后,发现假设检验的结论变了,说明之前样本量是50的时候,我们犯了取伪错误。

所以我们说,要想同时减小弃真概率和取伪概率,一般就需要增加样本量。这跟统计抽样测试里的结论是类似的。当然样本量越大,测试成本也越高。

在统计抽样测试中,我们可以借助操作特性曲线,来描述测试设计方案背后的生产方风险和使用方风险,给测试结论做一个必要的补充。这是统计抽样测试缓解测试可信性问题的常规思路。

操作特性曲线

海旭老师,公众号:重新认识测试设计【统计的思想】统计抽样测试(二)

其实还有一个办法,可以达到类似的效果,就是用假设检验。

还是来看例子:假设待测批的批量是5000,要求不合格率不超过25%,抽取了305件样品做检验,有92件不合格,样本的不合格率是30.2%。那么,待测批是不是一个合格批呢?按统计抽样测试的判断,结论应该是不合格,但这个结论不一定靠谱,有可能犯弃真错误,所以需要用操作特性曲线来补充说明。

如果用假设检验,应该怎么做呢?在前面的文章中,我们已经介绍过抽样分布的一组基本规律:

① 样本量越大,样本均值越趋近于服从正态分布;

② 样本均值的数学期望与总体的数学期望相同;

③ 样本均值的方差等于总体方差除以样本量。

抽样分布的基本规律

海旭老师,公众号:重新认识测试设计【统计的思想】假设检验(一)

如果我们把不合格的样本记作1,合格的样本记作0,那样本均值就等同于样本不合格率。这样,上述基本规律就能应用于统计抽样测试了,即:

① 当样本量n很大的时候,样本不合格率近似服从正态分布;

② 样本不合格率的数学期望,等于整批的不合格率p;

③ 样本不合格率的方差,等于p(1-p)/n。因为整批服从伯努利分布,方差是p(1-p)。

基于此,我们就可以做假设检验了:

  1. 建立零假设。假设整批的不合格率是25%,是一个合格批;

  2. 设定显著水平。这里取α=0.05;

  3. 计算测试结果发生的概率。既然样本不合格率服从正态分布,均值是25%,方差是:\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}=0.0248

    那么样本不合格率达到30.2%以上的概率,就是:P(T)=1-\Phi\left( \frac{0.302-0.25}{0.0248} \right)=0.0179

  4. 统计推断。测试结果发生的概率比显著水平小,所以否定零假设。

最终的测试结论是,在显著水平0.05的概率意义下,待测批不合格。可以看到,假设检验是从显著水平的角度来补充测试结论的,同样能缓解测试可信性问题。


http://www.kler.cn/a/517399.html

相关文章:

  • 第38周:猫狗识别 (Tensorflow实战第八周)
  • springboot使用ssl连接elasticsearch
  • GPB独立站外链:构建长期权威的SEO基础SEO的竞争
  • 系统思考—复杂问题的根源分析
  • 九、CSS工程化方案
  • 在 Windows 系统上,将 Ubuntu 从 C 盘 迁移到 D 盘
  • 对神经网络基础的理解
  • MATLAB支持的概率分布
  • Hive 知识点八股文记录 ——(三)区别和原理
  • Unity自学之旅05
  • mysql-023.增删查改进阶-表的设计,查询进阶
  • (算法竞赛)DFS深搜4——迷宫第一条路问题解析与代码实现
  • 2025数学建模美赛|赛题评析|难度对比|选题建议
  • SpringBoot开发(二)Spring Boot项目构建、Bootstrap基础知识
  • Linux主机密钥验证失败的解决方法
  • YOLOv5训练自己的数据及rknn部署
  • vscode下poetry管理项目的debug配置
  • 本地大模型编程实战(01)实现翻译功能
  • 详细介绍:持续集成与持续部署(CI/CD)技术细节(关键实践、CI/CD管道、优势与挑战)
  • leetcode 3090. 每个字符最多出现两次的最长子字符串
  • 深度学习-96-大语言模型LLM之基于langchain的ConversationBufferMemory缓冲记忆
  • 2025年数学建模美赛 A题分析(3)楼梯使用方向偏好模型
  • 简识JVM中并发垃圾回收器和多线程并行垃圾回收器的区别
  • C++ 中常见排序算法(归并、快速、桶、基数排序)
  • PADDLE PREDICT
  • Maven修改默认编码格式UTF-8