Redis高阶6-预热、雪崩、击穿、穿透问题
Redis缓存常见问题
一 缓存预热
1.1 什么是预热
缓存预热是一种在程序启动或缓存失效之后,主动将热点数据加载到缓存中的策略。这样,在实际请求到达程序时,热点数据已经存在于缓存中,从而减少了缓存穿透和缓存击穿的情况,也缓解了SQL服务器的压力。
1.2缓存预热如何解决?
使用 @PostConstruct 初始化白名单数据。
@PostConstruct//初始化白名单数据,
public void init()
{
//白名单客户预加载到布隆过滤器
String uid = "customer:12";
//1 计算hashcode,由于可能有负数,直接取绝对值
int hashValue = Math.abs(uid.hashCode());
//2 通过hashValue和2的32次方取余后,获得对应的下标坑位
long index = (long) (hashValue % Math.pow(2, 32));
System.out.println(uid+" 对应------坑位index:"+index);
//3 设置redis里面bitmap对应坑位,该有值设置为1
redisTemplate.opsForValue().setBit("whitelistCustomer",index,true);
}
二 缓存雪崩
2.1缓存雪崩是什么?
缓存雪崩指的是redis 主机宕机, Redis全盘崩溃,或者redis 中有大量key同时过期大面积失效,导致redis中查不到数据,最终请求到数据库中,对数据库服务器造成压力,导致数据库直接挂了的情况。
2.2发生缓存雪崩的情况
- redis主机挂了,Redis 全盘崩溃,偏硬件运维
- redis中有大量key同时过期大面积失效,偏软件开发
2.3 预防和解决
- redis中key设置为永不过期 or 过期时间错开
- redis缓存集群实现高可用
- 多缓存结合预防雪崩
- 服务降级
- 云数据库Redis
三 缓存穿透
3.1缓存穿透指的是什么?
请求去查询一条数据,先查询redis,redis中不存在,在去查询mysql,如果mysql里面也是不存在该数据,redis和MySQL都查询不到该条记录,但是这样请求每次都会打到数据库上面去,导致后台数据库压力暴增,这时候redis并没有起到对于MySQL数据库的保护作用,这种现象就称之为缓存穿透。
3.2 如何解决缓存穿透呢?
-
方案1:空对象缓存或者缺省值
第一种解决方案,回写增强
如果发生了缓存穿透,我们可以针对要查询的数据,在Redis里存一个和业务部门商量后确定的缺省值(比如,零、负数、defaultNull等)。比如,键uid:abcdxxx,值defaultNull作为案例的key和value先去redis查键uid:abcdxxx没有,再去mysql查没有获得 ,这就发生了一次穿透现象。but,可以增强回写机制mysql也查不到的话也让redis存入刚刚查不到的key并保护mysql。第一次来查询uid:abcdxxx,redis和mysql都没有,返回null给调用者,但是增强回写后第二次来查uid:abcdxxx,此时redis就有值了。
可以直接从Redis中读取default缺省值返回给业务应用程序,避免了把大量请求发送给mysql处理,打爆mysql。但是,此方法架不住黑客的恶意攻击,有缺陷…,只能解决key相同的情况
恶意攻击
黑客会对你的系统进行攻击,拿一个不存在的id去查询数据,会产生大量的请求到数据库去查询。可能会导致你的数据库由于压力过大而宕掉
key相同打你系统,第一次打到mysql,空对象缓存后第二次就返回defaultNull缺省值,避免mysql被攻击,不用再到数据库中去走一圈了
key不同打你系统,由于存在空对象缓存和缓存回写(看自己业务不限死),redis中的无关紧要的key也会越写越多(记得设置redis过期时间)
- 方案2:Google布隆过滤器Guava解决缓存穿透
https://github.com/google/guava/blob/master/guava/src/com/google/common/hash/BloomFilter.java
案例:白名单过滤器
其它配置见Redis高阶5-布隆过滤器
POM
<!--guava Google 开源的 Guava 中自带的布隆过滤器-->
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>23.0</version>
</dependency>
业务类
@Test
public void testGuavaWithBloomFilter()
{
// 创建布隆过滤器对象
BloomFilter<Integer> filter = BloomFilter.create(Funnels.integerFunnel(), 100);
// 判断指定元素是否存在
System.out.println(filter.mightContain(1));
System.out.println(filter.mightContain(2));
// 将元素添加进布隆过滤器
filter.put(1);
filter.put(2);
System.out.println(filter.mightContain(1));
System.out.println(filter.mightContain(2));
}
GuavaBloomFilterService
import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;
import lombok.extern.slf4j.Slf4j;
import org.springframework.stereotype.Service;
import java.util.ArrayList;
import java.util.List;
/**
* @auther zzyy
* @create 2022-12-30 16:50
*/
@Service
@Slf4j
public class GuavaBloomFilterService{
public static final int _1W = 10000;
//布隆过滤器里预计要插入多少数据
public static int size = 100 * _1W;
//误判率,它越小误判的个数也就越少(思考,是不是可以设置的无限小,没有误判岂不更好)
//fpp the desired false positive probability
public static double fpp = 0.03;
// 构建布隆过滤器
private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size,fpp);
public void guavaBloomFilter(){
//1 先往布隆过滤器里面插入100万的样本数据
for (int i = 1; i <=size; i++) {
bloomFilter.put(i);
}
//故意取10万个不在过滤器里的值,看看有多少个会被认为在过滤器里
List<Integer> list = new ArrayList<>(10 * _1W);
for (int i = size+1; i <= size + (10 *_1W); i++) {
if (bloomFilter.mightContain(i)) {
log.info("被误判了:{}",i);
list.add(i);
}
}
log.info("误判的总数量::{}",list.size());
}
}
GuavaBloomFilterController
import io.swagger.annotations.Api;
import io.swagger.annotations.ApiOperation;
import lombok.extern.slf4j.Slf4j;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RestController;
import javax.annotation.Resource;
@Api(tags = "google工具Guava处理布隆过滤器")
@RestController
@Slf4j
public class GuavaBloomFilterController
{
@Resource
private GuavaBloomFilterService guavaBloomFilterService;
@ApiOperation("guava布隆过滤器插入100万样本数据并额外10W测试是否存在")
@RequestMapping(value = "/guavafilter",method = RequestMethod.GET)
public void guavaBloomFilter()
{
guavaBloomFilterService.guavaBloomFilter();
}
}
四 缓存击穿
4.1 缓存击穿是什么?
缓存击穿就是大量请求同时查询一个key时,此时这个key刚好失效了,就会导致大量的请求到数据库上面去,也就是热点key突然都失效了,MySQL承受高并发量,进而导致数据库宕机
4.2 缓存击穿如何解决?
缓存击穿的解决方式有一下几种:
- 差异失效时间,对于访问频繁的热点key,直接就不设置过期时间
- 互斥更新,采用双检加锁(多个线程同时去查询数据库的这条数据,那么我们可以在第一个查询数据的请求上使用一个 互斥锁来锁住它。其他的线程走到这一步拿不到锁就等着,等第一个线程查询到了数据,然后做缓存。后面的线程进来发现已经有缓存了,就直接走缓存。)
4.3 案例
以聚划算功能为案例,演示缓存击穿,问题是热点key5突然失效导致了缓存击穿,在通过redis实现聚划算商品推荐之后,每次推荐一组商品,到期后需要更换另一组商品。这时候最危险的就是,到期的商品key删除了,而新的商品key并没有加载到redis中,就会导致缓存击穿。解决思路如下:
- 功能实现肯定是需要使用 Redis,而不是MySQL实现
- 先需要将MySQL里面参加活动的数据抽取进Redis,一般采用定时器扫描来决定上线活动还是下线取消。
- 支持分页功能,一页20条记录
- 在redis中List数据类型的Lpush即可实现
上述案例的实现还是在之前的功能模块实现:
- 业务类
Product
@Data
@AllArgsConstructor
@NoArgsConstructor
@ApiModel(value = "聚划算活动producet信息")
public class Product
{
//产品ID
private Long id;
//产品名称
private String name;
//产品价格
private Integer price;
//产品详情
private String detail;
}
JHSTaskService
@Service
@Slf4j
public class JHSTaskService
{
public static final String JHS_KEY="jhs";
public static final String JHS_KEY_A="jhs:a";
public static final String JHS_KEY_B="jhs:b";
@Autowired
private RedisTemplate redisTemplate;
/**
* 偷个懒不加mybatis了,模拟从数据库读取100件特价商品,用于加载到聚划算的页面中
* @return
*/
private List<Product> getProductsFromMysql() {
List<Product> list=new ArrayList<>();
for (int i = 1; i <=20; i++) {
Random rand = new Random();
int id= rand.nextInt(10000);
Product obj=new Product((long) id,"product"+i,i,"detail");
list.add(obj);
}
return list;
}
@PostConstruct
public void initJHS(){
log.info("启动定时器淘宝聚划算功能模拟.........."+ DateUtil.now());
new Thread(() -> {
//模拟定时器一个后台任务,定时把数据库的特价商品,刷新到redis中
while (true){
//模拟从数据库读取100件特价商品,用于加载到聚划算的页面中
List<Product> list=this.getProductsFromMysql();
//采用redis list数据结构的lpush来实现存储
this.redisTemplate.delete(JHS_KEY);
//lpush命令
this.redisTemplate.opsForList().leftPushAll(JHS_KEY,list);
//间隔一分钟 执行一遍,模拟聚划算每3天刷新一批次参加活动
try { TimeUnit.MINUTES.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }
log.info("runJhs定时刷新..............");
}
},"t1").start();
}
}
JHSProductController
@RestController
@Slf4j
@Api(tags = "聚划算商品列表接口")
public class JHSProductController
{
public static final String JHS_KEY="jhs";
public static final String JHS_KEY_A="jhs:a";
public static final String JHS_KEY_B="jhs:b";
@Autowired
private RedisTemplate redisTemplate;
/**
* 分页查询:在高并发的情况下,只能走redis查询,走db的话必定会把db打垮
* @param page
* @param size
* @return
*/
@RequestMapping(value = "/pruduct/find",method = RequestMethod.GET)
@ApiOperation("按照分页和每页显示容量,点击查看")
public List<Product> find(int page, int size) {
List<Product> list=null;
long start = (page - 1) * size;
long end = start + size - 1;
try {
//采用redis list数据结构的lrange命令实现分页查询
list = this.redisTemplate.opsForList().range(JHS_KEY, start, end);
if (CollectionUtils.isEmpty(list)) {
//TODO 走DB查询
}
log.info("查询结果:{}", list);
} catch (Exception ex) {
//这里的异常,一般是redis瘫痪 ,或 redis网络timeout
log.error("exception:", ex);
//TODO 走DB查询
}
return list;
}
}
启动测试
4.4 Bug和隐患说明
-
热点key突然失效,导致缓存击穿
delete命令执行间隙,其它线程继续找Redis为null
-
加强
-
互斥更新,采用双检加锁策略
多个线程同时去查询数据库的这条数据,那么我们可以在第一个查询数据的请求上使用一个 互斥锁来锁住它。其他的线程走到这一步拿不到锁就等着,等第一个线程查询到了数据,然后做缓存。后面的线程进来发现已经有缓存了,就直接走缓存。
差异失效时间
-
-
代码修改
JHSTaskService
@PostConstruct
public void initJHSAB(){
log.info("启动AB定时器计划任务淘宝聚划算功能模拟.........."+DateUtil.now());
new Thread(() -> {
//模拟定时器,定时把数据库的特价商品,刷新到redis中
while (true){
//模拟从数据库读取100件特价商品,用于加载到聚划算的页面中
List<Product> list=this.getProductsFromMysql();
//先更新B缓存
this.redisTemplate.delete(JHS_KEY_B);
this.redisTemplate.opsForList().leftPushAll(JHS_KEY_B,list);
this.redisTemplate.expire(JHS_KEY_B,20L,TimeUnit.DAYS);
//再更新A缓存
this.redisTemplate.delete(JHS_KEY_A);
this.redisTemplate.opsForList().leftPushAll(JHS_KEY_A,list);
this.redisTemplate.expire(JHS_KEY_A,15L,TimeUnit.DAYS);
//间隔一分钟 执行一遍
try { TimeUnit.MINUTES.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }
log.info("runJhs定时刷新双缓存AB两层..............");
}
},"t1").start();
}
JHSProductController
@RequestMapping(value = "/pruduct/findab",method = RequestMethod.GET)
@ApiOperation("防止热点key突然失效,AB双缓存架构")
public List<Product> findAB(int page, int size) {
List<Product> list=null;
long start = (page - 1) * size;
long end = start + size - 1;
try {
//采用redis list数据结构的lrange命令实现分页查询
list = this.redisTemplate.opsForList().range(JHS_KEY_A, start, end);
if (CollectionUtils.isEmpty(list)) {
log.info("=========A缓存已经失效了,记得人工修补,B缓存自动延续5天");
//用户先查询缓存A(上面的代码),如果缓存A查询不到(例如,更新缓存的时候删除了),再查询缓存B
this.redisTemplate.opsForList().range(JHS_KEY_B, start, end);
//TODO 走DB查询
}
log.info("查询结果:{}", list);
} catch (Exception ex) {
//这里的异常,一般是redis瘫痪 ,或 redis网络timeout
log.error("exception:", ex);
//TODO 走DB查询
}
return list;
}
=A缓存已经失效了,记得人工修补,B缓存自动延续5天");
//用户先查询缓存A(上面的代码),如果缓存A查询不到(例如,更新缓存的时候删除了),再查询缓存B
this.redisTemplate.opsForList().range(JHS_KEY_B, start, end);
//TODO 走DB查询
}
log.info("查询结果:{}", list);
} catch (Exception ex) {
//这里的异常,一般是redis瘫痪 ,或 redis网络timeout
log.error("exception:", ex);
//TODO 走DB查询
}
return list;
}