Codeforces Round 276 (Div. 1) B. Maximum Value(数学+二分)【2100】
题目链接
https://codeforces.com/contest/484/problem/B
思路
a m o d b a \, mod \, b amodb可以转化成 a − k × b a - k\times b a−k×b,其中 k = ⌊ a b ⌋ k = \left \lfloor \frac{a}{b} \right \rfloor k=⌊ba⌋。
我们发现 k × b < a < ( k + 1 ) × b k \times b < a < (k+1)\times b k×b<a<(k+1)×b。
我们可以枚举 k k k和 b b b,在排序去重后的数组中二分查找最大的 a a a。
枚举 k k k和 b b b的时间复杂度为调和级数,最后的时间复杂度为: O ( n ( l o g 2 n ) 2 ) O(n(log_{2}n)^{2}) O(n(log2n)2)
代码
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define double long double
typedef long long i64;
typedef unsigned long long u64;
typedef pair<int, int> pii;
const int N = 2e5 + 5, M = 1e6 + 5;
const int mod = 998244353;
const int inf = 0x3f3f3f3f3f3f3f3f;
std::mt19937 rnd(time(0));
int n;
int a[N];
void solve()
{
cin >> n;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
sort(a + 1, a + 1 + n);
int maxx = *max_element(a + 1, a + 1 + n);
int idx = unique(a + 1, a + 1 + n) - a - 1;
int ans = 0;
for (int i = 1; i <= idx; i++)
{
for (int k = 1; k <= maxx / a[i]; k++)
{
int id = lower_bound(a + 1, a + 1 + n, (k + 1) * a[i]) - a;
id--;
ans = max(ans, a[id] % a[i]);
}
}
cout << ans << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int test = 1;
// cin >> test;
for (int i = 1; i <= test; i++)
{
solve();
}
return 0;
}