当前位置: 首页 > article >正文

IDM-VTON本地部署教程:双重编码 + 文字提示,解锁真实野外试穿

一、介绍

IDM-VTON:改进扩散模型,实现真实的野外虚拟试穿。


  • 技术原理:改进扩散模型,利用视觉编码器提取服装高级语义信息并与交叉注意力层融合,通过并行 UNet 结构的 GarmentNet 捕捉服装低级特征并与自注意力层结合,还引入详细文本提示,以提升生成图像的真实度。
  • 功能特点
    • 双重编码模组:用两个不同模组编码服装图像语义,将视觉编码器提取的高级语义融合到交叉注意力层,提升影像细节品质。
    • 文字提示增强:将并行 UNet 提取的低级特征融合到自注意力层,结合服装和人物图像的文字提示,增强视觉效果真实性。
    • 客制化方法:使用一对人物服装图像的客制化方法,提高保真度和真实性。
    • 野外试穿优化:针对现实世界场景优化,能在复杂背景和多样姿势下生成高品质试穿影像。

二、部署过程

基础环境最低要求说明:

环境名称版本信息1
Ubuntu22.04.4 LTS
CudaV12.1.105
Python3.8.10
NVIDIA CorporationRTX 4090

1. 更新基础软件包

查看系统版本信息

# 查看系统版本信息,包括ID(如ubuntu、centos等)、版本号、名称、版本号ID等
cat /etc/os-release

1726627581255_image.png

配置 apt 国内源

# 更新软件包列表
apt-get update

这个命令用于更新本地软件包索引。它会从所有配置的源中检索最新的软件包列表信息,但不会安装或升级任何软件包。这是安装新软件包或进行软件包升级之前的推荐步骤,因为它确保了您获取的是最新版本的软件包。

# 安装 Vim 编辑器
apt-get install -y vim

这个命令用于安装 Vim 文本编辑器。-y 选项表示自动回答所有的提示为“是”,这样在安装过程中就不需要手动确认。Vim 是一个非常强大的文本编辑器,广泛用于编程和配置文件的编辑。

为了安全起见,先备份当前的 sources.list 文件之后,再进行修改:

# 备份现有的软件源列表
cp /etc/apt/sources.list /etc/apt/sources.list.bak

这个命令将当前的 sources.list 文件复制为一个名为 sources.list.bak 的备份文件。这是一个好习惯,因为编辑 sources.list 文件时可能会出错,导致无法安装或更新软件包。有了备份,如果出现问题,您可以轻松地恢复原始的文件。

# 编辑软件源列表文件
vim /etc/apt/sources.list

这个命令使用 Vim 编辑器打开 sources.list 文件,以便您可以编辑它。这个文件包含了 APT(Advanced Package Tool)用于安装和更新软件包的软件源列表。通过编辑这个文件,您可以添加新的软件源、更改现有软件源的优先级或禁用某些软件源。

在 Vim 中,您可以使用方向键来移动光标,i 键进入插入模式(可以开始编辑文本),Esc 键退出插入模式,:wq 命令保存更改并退出 Vim,或 :q! 命令不保存更改并退出 Vim。

编辑 sources.list 文件时,请确保您了解自己在做什么,特别是如果您正在添加新的软件源。错误的源可能会导致软件包安装失败或系统安全问题。如果您不确定,最好先搜索并找到可靠的源信息,或者咨询有经验的 Linux 用户。

1726627632814_image.png

使用 Vim 编辑器打开 sources.list 文件,复制以下代码替换 sources.list里面的全部代码,配置 apt 国内阿里源。

deb http://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse

1726627649314_image.png

安装常用软件和工具

# 更新源列表,输入以下命令:
apt-get update

# 更新系统软件包,输入以下命令:
apt-get upgrade

# 安装常用软件和工具,输入以下命令:
apt-get -y install vim wget git git-lfs unzip lsof net-tools gcc cmake build-essential

出现以下页面,说明国内apt源已替换成功,且能正常安装apt软件和工具

1726627670779_image.png

2. 安装 NVIDIA CUDA Toolkit 12.1

  • 下载 CUDA Keyring :
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.0-1_all.deb

这个命令用于下载 CUDA 的 GPG 密钥环,它用于验证 CUDA 软件包的签名。这是确保软件包安全性的一个重要步骤。

  • 安装 CUDA Keyring :
dpkg -i cuda-keyring_1.0-1_all.deb

使用 dpkg 安装下载的密钥环。这是必要的,以便 apt 能够验证从 NVIDIA 仓库下载的软件包的签名。

1726627689852_image.png

  • 删除旧的 apt 密钥(如果必要) :
apt-key del 7fa2af80

这一步可能不是必需的,除非您知道 7fa2af80 是与 CUDA 相关的旧密钥,并且您想从系统中删除它以避免混淆。通常情况下,如果您只是安装 CUDA 并使用 NVIDIA 提供的最新密钥环,这一步可以跳过。

  • 更新 apt 包列表 :
apt-get update

更新 apt 的软件包列表,以便包括刚刚通过 cuda-keyring 添加的 NVIDIA 仓库中的软件包。

  • 安装 CUDA Toolkit :
apt-get -y install cuda-toolkit-12-1

1726627724243_image.png

出现以下页面,说明 NVIDIA CUDA Toolkit 12.1 安装成功

1726627736357_image.png

注意:这里可能有一个问题。NVIDIA 官方 Ubuntu 仓库中可能不包含直接名为 cuda-toolkit-12-1 的包。通常,您会安装一个名为 cuda 或 cuda-12-1 的元包,它会作为依赖项拉入 CUDA Toolkit 的所有组件。请检查 NVIDIA 的官方文档或仓库,以确认正确的包名。

如果您正在寻找安装特定版本的 CUDA Toolkit,您可能需要安装类似 cuda-12-1 的包(如果可用),或者从 NVIDIA 的官方网站下载 CUDA Toolkit 的 .run 安装程序进行手动安装。

请确保您查看 NVIDIA 的官方文档或 Ubuntu 的 NVIDIA CUDA 仓库以获取最准确的包名和安装指令。

1726627761880_image.png

  • 出现以上情况,需要配置 NVIDIA CUDA Toolkit 12.1 系统环境变量

编辑 ~/.bashrc 文件

# 编辑 ~/.bashrc 文件
vim ~/.bashrc

插入以下环境变量

# 插入以下环境变量
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

1726627785017_image.png

激活 ~/.bashrc 文件

# 激活 ~/.bashrc 文件
source ~/.bashrc

查看cuda系统环境变量

which nvcc
nvcc -V

1726627797367_image.png

3. 安装 Miniconda

  • 下载 Miniconda 安装脚本 :
    • 使用 wget 命令从 Anaconda 的官方仓库下载 Miniconda 的安装脚本。Miniconda 是一个更小的 Anaconda 发行版,包含了 Anaconda 的核心组件,用于安装和管理 Python 包。
  • 运行 Miniconda 安装脚本 :
    • 使用 bash 命令运行下载的 Miniconda 安装脚本。这将启动 Miniconda 的安装过程。
# 下载 Miniconda 安装脚本
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

# 运行 Miniconda 安装脚本
bash Miniconda3-latest-Linux-x86_64.sh

# 初次安装需要激活 base 环境
source ~/.bashrc

按下回车键(enter)

1726627823409_image.png

输入yes

1726627835177_image.png

输入yes

1726627844297_image.png

安装成功如下图所示

1726627852297_image.png

pip配置清华源加速

# 编辑 /etc/pip.conf 文件
vim  /etc/pip.conf

加入以下代码

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple

注意事项:

  • 请确保您的系统是 Linux x86_64 架构,因为下载的 Miniconda 版本是为该架构设计的。
  • 在运行安装脚本之前,您可能需要使用 chmod +x Miniconda3-latest-Linux-x86_64.sh 命令给予脚本执行权限。
  • 安装过程中,您将被提示是否同意许可协议,以及是否将 Miniconda 初始化。通常选择 "yes" 以完成安装和初始化。
  • 安装完成后,您可以使用 conda 命令来管理 Python 环境和包。
  • 如果链接无法访问或解析失败,可能是因为网络问题或链接本身的问题。请检查网络连接,并确保链接是最新的和有效的。如果问题依旧,请访问 Anaconda 的官方网站获取最新的下载链接。

4. 从 github 仓库 克隆项目

  • 克隆存储库:
# 克隆项目
git clone https://github.com/yisol/IDM-VTON

请注意,如果 git clone https://github.com/yisol/IDM-VTON.git 这个链接不存在或者无效,git clone 命令将不会成功克隆项目,并且会报错。确保链接是有效的,并且您有足够的权限访问该存储库。

5. 创建虚拟环境

# 创建一个名为 idm 的新虚拟环境,并指定 Python 版本为 3.10
conda create --name idm python=3.10 -y

6. 安装模型依赖库

  • 切换到项目目录、激活 echomimic 虚拟环境、安装 requirements.txt 依赖
# 切换到 IDM-VTON 项目工作目录
cd /IDM-VTON

# 激活 idm 虚拟环境
conda activate idm

# 在 idm 环境中安装依赖
conda env update -f environment.yaml

7. 下载预训练模型

  • 下载预训练权重
# 下载预训练权重
git lfs install
git clone https://huggingface.co/spaces/yisol/IDM-VTON
  • 下载人体解析的检查点
# 下载人体解析的检查点
wget https://huggingface.co/spaces/yisol/IDM-VTON/tree/main/ckpt

将检查点放在 ckpt 文件夹下。

ckpt
|-- densepose
    |-- model_final_162be9.pkl
|-- humanparsing
    |-- parsing_atr.onnx
    |-- parsing_lip.onnx

|-- openpose
    |-- ckpts
        |-- body_pose_model.pth

8. 运行 app.py 文件

# 切换到 IDM-VTON 项目工作目录
cd /IDM-VTON

# 激活 idm 虚拟环境
conda activate idm

# 设置 Gradio 服务器名称和端口 
export GRADIO_SERVER_NAME=0.0.0.0
export GRADIO_SERVER_PORT=8080

# 运行 app.py 文件
python gradio_demo/app.py

三、网页演示

出现以下 Gradio 页面,即是模型已搭建完成。

1734512038115_image.png


http://www.kler.cn/a/523742.html

相关文章:

  • 【MySQL】悲观锁和乐观锁的原理和应用场景
  • 程序地址空间
  • [STM32 - 野火] - - - 固件库学习笔记 - - -十三.高级定时器
  • 元素的显示与隐藏
  • Kiwi 安卓浏览器本月停止维护,扩展功能迁移至 Edge Canary
  • AI大模型开发原理篇-2:语言模型雏形之词袋模型
  • 【Elasticsearch】 索引模板 ignore_missing_component_templates
  • 【自学嵌入式(6)天气时钟:软硬件准备、串口模块开发】
  • 一文大白话讲清楚webpack进阶——5——dev-server原理及其作用
  • 【信息系统项目管理师-选择真题】2010上半年综合知识答案和详解
  • java求职学习day15
  • dokploy 如何部署 nuxt 项目?(进来少踩坑)
  • 【uniapp】uniapp使用java线程池
  • 1.1 画质算法的主要任务
  • AI软件栈:LLVM分析(二)
  • TL494方案开关电源方案
  • 更新文章分类
  • 在sortablejs的拖拽排序情况下阻止input拖拽事件
  • 解决报错“The layer xxx has never been called and thus has no defined input shape”
  • Vue 3 中的 TypeScript:接口、自定义类型与泛型
  • Android View 的事件分发机制解析
  • JS中的Date()操作与易错点
  • 磁珠的选型以及变压器气隙问题
  • Ubuntu 20.04 Realtek 8852无线网卡驱动
  • 接口技术-第4次作业
  • C/C++中的#define和const的特点与区别