NLP模型大对比:Transformer(Bert) > RNN > n-gram
结论
Transformer(Bert)这类用注意力的 大于 RNN 大于 传统的n-gram
n-gram VS BERT
我们可以用一个 图书馆查询 的类比来解释它们的差异:
一、核心差异对比
维度 | n-gram 模型 | BERT(带注意力) |
---|---|---|
工作方式 | 固定窗口的"近视观察员" | 全局关联的"侦探" |
依赖距离 | 只能看前N-1个词(如3-gram只看前2词) | 可关注任意距离的上下文 |
语义理解 | 机械统计共现频率 | 理解词语间的深层关系 |
典型场景 | "牛奶要配_" → "饼干"(高频搭配) | "牛奶要配_" → "燕麦"(健康概念关联) |
二、具体差异拆解
1. 观察范围限制
-
n-gram 像用 望远镜片段观察
例:处理句子 "虽然价格贵但质量真的好"-
3-gram只能看到局部组合:
["价格_贵_但", "贵_但_质量", "但_质量_真"]
-
无法关联首尾的 "价格" 和 "质量" 的对比关系
-
-
BERT 像用 全景扫描仪
通过自注意力机制,让每个词都能关注到句子中所有其他词:# "质量"对"价格"的注意力权重可能高达0.7 # "但"对"虽然"的注意力权重可能达0.6
2. 语义关联能力
-
n-gram 的局限性案例
输入: "苹果股价大涨,因为新品很甜"-
3-gram会错误关联:"新品_很_甜" → 可能预测"西瓜"(高频搭配)
-
无法发现 "苹果" 在此处指公司而非水果
-
-
BERT 的解决方案
通过上下文注意力权重识别语义:"苹果" ← 关注到 "股价" (权重0.8) → 判定为企业 "甜" ← 关注到 "新品" (权重0.3) + "股价" (权重0.6) → 判定为比喻用法
3. 处理新词能力
-
n-gram 的困境
遇到新词 "元宇宙":-
所有包含 "元宇宙" 的n-gram都成为低频组合
-
导致预测结果不可靠
-
-
BERT 的优势
通过词向量和注意力机制:-
即使没出现过 "元宇宙",也能根据词根 "元"+"宇宙"_ 推测其语义
-
类似处理过 "元数据" 和 "宇宙探索" 的经验
-
n-gram VS RNN
n-gram 和 RNN 在自然语言处理中是两种截然不同的建模思路,我们可以通过 图书馆管理 的类比来理解它们的核心差异:
一、核心机制对比
维度 | n-gram 模型 | RNN 模型 |
---|---|---|
记忆方式 | 固定长度的纸质笔记 | 可延展的电子备忘录 |
依赖距离 | 只能记住前N-1步(如3-gram记2步) | 理论上可记忆无限步(实际约50-100步) |
计算特征 | 基于统计频次的查表操作 | 基于隐藏状态的动态计算 |
典型表现 | "昨天买的_奶茶"→"珍珠"(高频搭配) | "昨天买的_奶茶"→"已经变质"(因果推理) |
二、工作原理拆解
1. 信息传递方式
-
n-gram 像 接力赛跑
每个预测只依赖前一棒选手(前N-1个词):输入:"我想喝一杯热的" 3-gram预测流程: 想喝→杯 → 喝杯→热 → 杯热→的 → 热的→[END]
-
RNN 像 滚雪球
通过隐藏状态积累历史信息:hidden_state = update("我", init_state) hidden_state = update("想", hidden_state) hidden_state = update("喝", hidden_state) # 当处理到"热"时,隐藏状态已包含"我/想/喝"的信息
3. 处理长距离依赖
-
n-gram 的局限案例
句子:"虽然这款手机价格比同类产品高2000元,但它的_"-
5-gram只能看到"产品高2000元但它的"
-
无法关联开头的"虽然"与结尾的预测
-
-
RNN 的优势体现
通过隐藏状态传递,即使相距20个词:h_("虽然") → h_("价格") → ... → h_("它的") 仍保留着转折关系的语义特征
三、性能对比实验
以 诗歌生成 任务为例:
输入: "春风又绿江南岸"
模型 | 续写结果 | 得分 |
---|---|---|
3-gram | "明月何时照我还"(高频组合) | 合格但缺乏新意 |
RNN | "细雨轻拂柳叶弯"(创新性关联) | 更具文学性 |
人类 | "万物复苏生机盎" | 标准答案 |
关键差异:
-
n-gram依赖"江南岸"与"明月"的常见搭配
-
RNN捕捉到"春风"与"细雨"的意境关联