当前位置: 首页 > article >正文

算法基础学习——二分查找(附带Java模板)

有单调性的数列一定可以使用二分,没有单调性的题目也可能可以使用二分;

(一)整数二分

二分的本质:

        在某个整数区间内,存在某种性质使得区间内左半边的数都不满足该性质;而右半边的数都满足该性质;那么二分的作用就是找到左右这两个分界点;

1.找满足红色性质的边界点(如图上)

如果是让l等于mid(即找左半边的分界点)则要记得mid = (l+r+1)/2

2.找满足绿色性质的边界点(如图上)

如果是让r等于mid(即找右半边的分界点)则mid = (l+r)/2,不用另外加1;

情况1为什么额外加1? 答:因为在程序中,(l+r)/2是向下取整;当遇到遇到r=l+1(l和r只相差1,数组只有两个元素)的情况,(l+r)/2就等于l,这时候mid=(l+r)/2就是mid=l如下图所示:这次循环相当于没有变化,再次循环也不会有变化,进入死循环;

基本思想:不断缩小答案区间,当区间长度为一时,就是答案;

时间复杂度:平均O(logn) 

步骤:
  1. 先写出基本模板:mid = (l+r)/2

  2. 定义判断条件check()函数

  3. 看应该是让l=mid还是r=mid;如果应该l=mid则把前面的mid改为 mid=(l+r+1)/2

模板:
// 检查x是否满足某种性质  
private static boolean check(int x) {  
   /* ... */  
}  

// 区间[left, right]被划分成[left, mid]和[mid + 1, right]时使用: 
// 或者称之为左二分查询,查找左侧第一个满足条件的数
private static int leftBinarySearch(int[] arr, int left, int right) {  
   while (left < right) {  
      int mid = arr[left + right >> 1];  
      if (check(mid)) {  
         right = mid;    // check()判断mid是否满足性质  
      } else {  
         left = mid + 1;  
      }  
   }  
   return left;  
}  

// 区间[left, right]被划分成[left, mid - 1]和[mid, right]时使用:  
// 或者称之为右二分查询,查找右侧最后一个满足条件的数
private static int rightBinarySearch(int[] arr, int left, int right) {  
   while (left < right) {  
      int mid = arr[left + right + 1 >> 1];  
      if (check(mid)) {  
         left = mid;    // check()判断mid是否满足性质  
      } else {  
         right = mid - 1;  // 有加必有减
      }  
   }  
   return left;  
}

(二)浮点数二分

典型问题:求一个数的平方根

基本思想:不断缩小答案区间,当区间长度足够小时(即左右边界之差足够小),边界的值就约等于答案;

时间复杂度:平均O(logn) 

步骤:
  • mid就等于(r+l)/2;

  • while循环判定条件为r-l>1e-8(左右边界之差足够小时结束循环)

模板:
// 检查x是否满足某种性质  
private static boolean check(int x) {  
   /* ... */  
}  

// 区间[left, right]被划分成[left, mid]和[mid + 1, right]时使用: 
// 或者称之为左二分查询,查找左侧第一个满足条件的数
private static int leftBinarySearch(int[] arr, int left, int right) {  
   while (left < right) {  
      int mid = arr[left + right >> 1];  
      if (check(mid)) {  
         right = mid;    // check()判断mid是否满足性质  
      } else {  
         left = mid + 1;  
      }  
   }  
   return left;  
}  

// 区间[left, right]被划分成[left, mid - 1]和[mid, right]时使用:  
// 或者称之为右二分查询,查找右侧最后一个满足条件的数
private static int rightBinarySearch(int[] arr, int left, int right) {  
   while (left < right) {  
      int mid = arr[left + right + 1 >> 1];  
      if (check(mid)) {  
         left = mid;    // check()判断mid是否满足性质  
      } else {  
         right = mid - 1;  // 有加必有减
      }  
   }  
   return left;  
}

注意点:

  1. 使用二分一定可以找到一个满足条件的边界点(不会出现无解的情况);

  2. 整数二分中,l和r表示的是区间左右边界的数组下标;当遍历结束后l=r,arr[r] 就是所找的边界点;

  3. 浮点数二分中,l和r表示的不是数组下标,而是左右边界本身;

时间复杂度分析

二分查找(Binary Search)的时间复杂度分析如下:

1. 最好情况(Best Case)

如果目标元素正好是数组的中间元素,那么只需一次比较就能找到,时间复杂度为:

O(1)O(1)

2. 最坏情况(Worst Case)

每次查找都会将搜索范围缩小一半,假设数组长度为 nn,那么最多需要查找的次数是:

T(n)=T(n/2)+O(1)T(n) = T(n/2) + O(1)

展开递归:

T(n)=T(n/4)+O(1)+O(1)=T(n/8)+O(1)+O(1)+O(1)=…T(n) = T(n/4) + O(1) + O(1) = T(n/8) + O(1) + O(1) + O(1) = \dots

直到搜索范围缩小到 1,即 n/2k=1n/2^k = 1,解得:

k=log⁡2nk = \log_2 n

因此,最坏情况下的时间复杂度是:

O(log⁡n)O(\log n)

3. 平均情况(Average Case)

在没有额外信息的情况下,平均情况下也需要进行大约 O(log⁡n) 级别的比较,因此平均时间复杂度也是:

O(log⁡n)

总结

情况时间复杂度
最好情况O(1)O(1)
最坏情况O(log⁡n)O(\log n)
平均情况O(log⁡n)O(\log n)

二分查找的时间复杂度远优于线性查找(O(n)),但前提是数据必须是有序的,否则需要先进行排序(如快速排序 O(nlog⁡n)),这会影响整体效率。


http://www.kler.cn/a/524406.html

相关文章:

  • 17.Word:李楠-学术期刊❗【29】
  • 关联传播和 Python 和 Scikit-learn 实现
  • 【JavaWeb06】Tomcat基础入门:架构理解与基本配置指南
  • Nuitka打包python脚本
  • 嵌入式知识点总结 ARM体系与架构 专题提升(三)-中断与异常
  • 从替代到覆盖:暴雨信创服务器打开市场新局面
  • 消息队列篇--通信协议篇--应用层协议和传输层协议理解
  • wx044基于springboot+vue+uniapp的智慧物业平台小程序
  • FastStone Image Viewer图像处理软件安装步骤(百度网盘链接)
  • 51单片机(STC89C52)开发:点亮一个小灯
  • 工作总结:git篇
  • C++并发编程指南05
  • 当贝 F7 Pro 与皮影戏:跨时空的光影对话,点亮家庭娱乐生活
  • 简单的排序算法
  • 【C语言】static关键字的三种用法
  • python学opencv|读取图像(四十九)使用cv2.bitwise()系列函数实现图像按位运算
  • spring中解决循环依赖的方法
  • 【llm对话系统】大模型源码分析之llama模型的long context更长上下文支持
  • 电路研究9.2.4——合宙Air780EP中MQTT 相关命令使用方法研究
  • 数仓ETL测试
  • 【华为OD-E卷 - 最长方连续方波信号 100分(python、java、c++、js、c)】
  • 【电工基础】2.低压带电作业定义,范围,工作要求,电工基本工具
  • CSS基础语法(全)
  • pytorch实现主成分分析 (PCA):用于数据降维和特征提取
  • 解决ImportError: cannot import name ‘notf‘
  • 虚幻基础10:isValid