从NLP视角看电视剧《狂飙》,会有什么发现?
文章目录
- 1、背景
- 2、数据获取
- 3、文本分析与可视化
- 3.1 短评数据预处理
- 3.2 词云图可视化
- 3.3 top关键词共现矩阵网络
- 3.4 《狂飙》演职员图谱构建
- 4、短评相关数据分析与可视化
- 5、总结
原文请关注:实用自然语言处理
作者:风兮
建议查看原文: https://mp.weixin.qq.com/s/nURcYKN6vRBKjbMXAUbEng
关键词: 爬虫、文本数据预处理、数据分析、可视化、自然语言处理、pyecharts
摘要: 本文主要内容,获取解析豆瓣《狂飙》的短评相关数据和演职员信息,在数据预处理后,进行简单的数据分析和可视化展示。
本文全部代码路径
https://github.com/fengxi177/pnlp2023/tree/main/chapter_1
1、背景
前文《文本数据预处理:可能需要关注这些点》分享了关于文本预处理的理论知识,本文将分享一份示例demo。正好,碰到了热议的电视剧《狂飙》。因此,本文打算从自然语言处理、数据分析和可视化的角度来凑个热闹(原本计划在大结局当天发出来文章,可惜,大结局有一段时间了。拖延了,哈哈哈)。
2、数据获取
既然要做电视剧《狂飙》相关的nlp数据分析,那么就先选定数据目标站。经过一圈搜寻对比,发现还是豆瓣中的评论更为客观,参与群体数量多,见解更丰富专业,哈哈哈。因此,本文将获取https://movie.douban.com/subject/35465232/ 页面中的相关数据。
截止2023年2月28日,豆瓣中电视剧《狂飙》的短评已经22w+(2023年2月6日13w+,评论热度依然很高)。通过翻看短评数据,可以发现不登录状态最多可以获取220条数据,登录后最多可以获取600条数据。一般,可以通过cookie和selenium的方式实现登录,网上有参考教程,自行搜集。
不过,在不登录状态下,通过URL参数设置分析,发现各参数下都可以获得220条数据。因此,本文只获取不登录状态下的数据。具体的,通过好评、中评和差评参数percent_type设置分别获取220条短评及其相关数据。(特别的,仔细观察URL的参数设置还可以获得更多的数据哦。)
def parse_comments(url):
"""
解析HTML页面,获得评论及相关数据
:param url:
:return:
"""
html = get_html(url)
soup_comment = BeautifulSoup(html, 'html.parser')
# 所有获取的一页数据
data_page = []
# 提取评论
comments_all = soup_comment.findAll("div", "comment-item")
for comments in comments_all:
try:
# 解析评论及相关数据
comment_info = comments.find("span", "comment-info") # 评论id相关信息
comment_vote = comments.find("span", "comment-vote") # 评论点赞信息
comment_content = comments.find("span", "short").text.replace("\n", "") # 评论内容
# 提取需要的各字段信息
info_list = comment_info.findAll("span")
star_rating = info_list[1]
user_name = comment_info.find("a").text
video_status = info_list[0].text # 电视剧观看状态
comment_score = int(star_rating["class"][0][-2:]) # 评论分值
comment_level = star_rating["title"] # 评论等级
comment_time = info_list[2].text.replace("\n", "").replace(" ", "") # 评论时间
# print(info_list)
comment_location = info_list[3].text # 评论位置
comment_vote_count = int(comment_vote.find("span", "votes vote-count").text) # 评论被点赞数
# 获取的一条数据
# ["用户名", "电视剧观看状态", "评论分数", "评论等级", "评论时间", "评论位置", "评论点赞数", "评论"]
data_row = [user_name, video_status, comment_score, comment_level,
comment_time, comment_location,
comment_vote_count, comment_content]
data_page.append(data_row)
except:
# 跳过解析异常的数据
continue
return data_page
完整代码:请查看get_comments_data.py文件
此外,本文还获取了《狂飙》的演职员信息数据,页面解析的代码片段如下。
html = get_html(url)
soup_info = BeautifulSoup(html, 'html.parser')
# 获得的结果信息
result_info_dict = {}
# 提取评论
info_all = soup_info.findAll("div", "info")
for info in info_all:
info_name = info.find("span", "name").text
info_role = info.find("span", "role").text
info_works_list = info.find("span", "works").findAll("a")
完整代码:请查看get_celebrity_info.py文件。
3、文本分析与可视化
3.1 短评数据预处理
文本数据预处理的详细介绍,可以参考文章《文本数据预处理:可能需要关注这些点》。在实际的应用分析中,数据预处理并不是等数据完全收集完毕后一蹴而就的。通常,在合适的时候进行必要的处理是十分必要的,比如本文在解析爬取数据的时候会进行一些替换和数据转换操作。
3.2 词云图可视化
词云图作为一种直观、简洁、易于理解的数据可视化方法,通过词云图文字大小、颜色、字体等方式的展示,人们可以迅速了解文本数据中的关键词和主题等有用信息。
本文利用pyecharts生成短评的词云图,其他也可以通过wordcloud包绘制词云图。特别的,可以通过背景图设置生成各种形状的词云图。
3.3 top关键词共现矩阵网络
文本中关键词是很重要的特征,关键词共现矩阵网络是一组文本中词或短语之间的共现关系网。该网络可以帮助我们发现文本中的潜在主题、领域和关联性,也可以用于文本数据可视化和分析。共现网络中,每个关键词被表示为一个节点,词之间的共现关系被表示为边,关键词之间的共现频率表示权重。我们可以使用网络分析算法挖掘文本中的相关主题和模式。
利用pyecharts可视化短评top 2000关键词的词共现结果如图所示。
Gephi是一个常用的网络分析和可视化软件,本文同时用gephi可视化了一组top 2000关键词的词共现关系图如下。
3.4 《狂飙》演职员图谱构建
知识图谱是一种将实体、属性、关系等知识以图谱的形式进行表示和存储的技术,可以帮助人们更加直观地了解知识的关联和组织方式。在影视、音乐、文学等领域,知识图谱也被广泛应用于作品分析、人物关系探究方面。
知识图谱的构建需要经过多个阶段,包括实体识别、关系抽取、实体链接等步骤。本文通过爬取《狂飙》的演职员信息,进行数据清洗和处理后,使用pyecharts构建了一个包含演员、导演、编剧、代表作、《狂飙》中的饰演人物等实体,以及他们之间关系的《狂飙》演职员知识图谱,用于展示演职员、作品及饰演人物之间的关系。通过图谱关系展示,可以直观的了解到演员、导演、编剧等之间的合作关系。这些关系的分析可以帮助我们更好地了解影视行业的人际关系网络,感兴趣的朋友可以继续扩展该图谱,探索更多的应用场景。
图谱构建的代码如下:
def generate_celebrity_graph():
"""
构建演职员关系图谱
:return:
"""
df = pd.read_csv("./data/狂飙演职员信息表.csv")
data = df.values.tolist()
# 转换格式
nodes = []
links = []
nodes_name = []
symbolSize_dict = {"姓名": 30, "角色": 20, "饰演人物": 20, "代表作": 20}
categories = [{"name": x} for x in symbolSize_dict.keys()]
for row in data:
# 姓名、角色(";"分割多个)、饰演人物(可能为空)、代表作(";"分割多个)
name, role, role_to_play, works = row
role_list = role.split(";")
works_list = works.split(";")
if name not in nodes_name:
nodes_name.append(name)
# 一个节点
node = {
"name": name,
"symbolSize": symbolSize_dict["姓名"],
"category": "姓名",
}
nodes.append(node)
for role_temp in role_list:
if role_temp not in nodes_name:
nodes_name.append(role_temp)
node = {
"name": role_temp,
"symbolSize": symbolSize_dict["角色"],
"category": "角色",
}
nodes.append(node)
link = {
"source": name,
"target": role_temp
}
links.append(link)
if role_temp == "演员":
if role_to_play not in nodes_name:
nodes_name.append(role_to_play)
node = {
"name": role_to_play,
"symbolSize": symbolSize_dict["饰演人物"],
"category": "饰演人物",
}
nodes.append(node)
link = {
"source": name,
"target": role_to_play
}
links.append(link)
for works_temp in works_list:
if works_temp not in nodes_name:
nodes_name.append(works_temp)
if works_temp == "狂飙":
node = {
"name": works_temp,
"symbolSize": 50, # 特别设置
"category": "代表作",
}
else:
node = {
"name": works_temp,
"symbolSize": symbolSize_dict["代表作"],
"category": "代表作",
}
nodes.append(node)
link = {
"source": name,
"target": works_temp
}
links.append(link)
c = (
Graph(init_opts=opts.InitOpts(theme=ThemeType.CHALK, width="1500px", height="1000px"))
.add(
"",
nodes,
links,
categories,
repulsion=1000,
linestyle_opts=opts.LineStyleOpts(curve=0.6),
)
.set_global_opts(
legend_opts=opts.LegendOpts(pos_left=100, pos_top=350, orient="vertical"),
title_opts=opts.TitleOpts(title="人物关系图谱"),
)
.render("./result/演职员图谱.html")
)
print("演职员关系图谱,保存路径为:./result/演职员图谱.html")
4、短评相关数据分析与可视化
在获取评论的时候,顺便获取了关于评分、评论时间、评论位置和评论点赞数等相关数据。本文对评论位置与评论数量进行了统计分析,并将结果利用pyecharts进行了可视化展示。由柱状图可以直观看到获取评论数据量与地域之间的分布。此外,如感兴趣,还可以对“评分与时间”、“评分与位置”、“评分与点赞数”等关系进行分析,绘制折线图、饼图、地图等可视化效果。
5、总结
本文通过获取和解析豆瓣电视剧《狂飙》的短评和演职员信息,对这部电影进行了简单的数据分析和可视化展示。感兴趣的朋友,可以继续发散思维、扩展数据,探索发现更多的数据分析和可视化结果。
原文首发于:https://mp.weixin.qq.com/s/nURcYKN6vRBKjbMXAUbEng