当前位置: 首页 > article >正文

新一代搜索引擎,是 ES 的15倍?

Manticore Search介绍

Manticore Search 是一个使用 C++ 开发的高性能搜索引擎,创建于 2017 年,其前身是 Sphinx Search 。Manticore Search 充分利用了 Sphinx,显着改进了它的功能,修复了数百个错误,几乎完全重写了代码并保持开源。这一切使 Manticore Search 成为一个现代,快速,轻量级和功能齐全的数据库,具有出色的全文搜索功能。

Manticore Search目前在GitHub收获3.7k star,拥有大批忠实用户。同时开源者在GitHub介绍中明确说明了该项目是是Elasticsearch的良好替代品,在不久的将来就会取代ELK中的E。

图片

img

同时,来自 MS 官方的测试表明 Manticore Search 性能比 ElasticSearch 有质的提升:

图片

img

在一定的场景中,Manticore 比 Elasticsearch 快 15 倍!完整的测评结果,可以参考:

  • https://manticoresearch.com/blog/manticore-alternative-to-elasticsearch/

优势

它与其他解决方案的区别在于:

  • 它非常快,因此比其他替代方案更具成本效益。例如,Manticore:

    • 对于小型数据,比MySQL快182倍(可重现)

    • 对于日志分析,比Elasticsearch快29倍(可重现)

    • 对于小型数据集,比Elasticsearch快15倍(可重现)

    • 对于中等大小的数据,比Elasticsearch快5倍(可重现)

    • 对于大型数据,比Elasticsearch快4倍(可重现)

    • 在单个服务器上进行数据导入时,最大吞吐量比Elasticsearch快最多2倍(可重现)

  • 由于其现代的多线程架构和高效的查询并行化能力,Manticore能够充分利用所有CPU核心,以实现最快的响应时间。

  • 强大而快速的全文搜索功能能够无缝地处理小型和大型数据集。

  • 针对小、中、大型数据集提供逐行存储。

  • 对于更大的数据集,Manticore通过Manticore Columnar Library提供列存储支持,可以处理无法适合内存的数据集。

  • 自动创建高效的二级索引,节省时间和精力。

  • 成本优化的查询优化器可优化搜索查询以实现最佳性能。

  • Manticore是基于SQL的,使用SQL作为其本机语法,并与MySQL协议兼容,使您可以使用首选的MySQL客户端。

  • 通过PHP、Python、JavaScript、Java、Elixir和Go等客户端,与Manticore Search的集成变得简单。

  • Manticore还提供了一种编程HTTP JSON协议,用于更多样化的数据和模式管理。

  • Manticore Search使用C++构建,启动快速,内存使用最少,低级别优化有助于其卓越性能。

  • 实时插入,新添加的文档立即可访问。

  • 提供互动课程,使学习轻松愉快。

  • Manticore还拥有内置的复制和负载均衡功能,增加了可靠性。

  • 可以轻松地从MySQL、PostgreSQL、ODBC、xml和csv等来源同步数据。

  • 虽然不完全符合ACID,但Manticore仍支持事务和binlog以确保安全写入。

  • 内置工具和SQL命令可轻松备份和恢复数据。

Craigslist、Socialgist、PubChem、Rozetka和许多其他公司使用 Manticore 进行高效搜索和流过滤。

使用

Docker 镜像可在Docker Hub上获取:

  • https://hub.docker.com/r/manticoresearch/manticore/

要在 Docker 中试验 Manticore Search,只需运行:

docker run -e EXTRA=1 --name manticore --rm -d manticoresearch/manticore && until docker logs manticore 2>&1 | grep -q "accepting connections"; do sleep 1; done && docker exec -it manticore mysql && docker stop manticore

之后,可以进行其他操作,例如创建表、添加数据并运行搜索:

create table movies(title text, year int) morphology='stem_en' html_strip='1' stopwords='en';

insert into movies(title, year) values ('The Seven Samurai', 1954), ('Bonnie and Clyde', 1954), ('Reservoir Dogs', 1992), ('Airplane!', 1980), ('Raging Bull', 1980), ('Groundhog Day', 1993), ('<a href="http://google.com/">Jurassic Park</a>', 1993), ('Ferris Bueller\'s Day Off', 1986);

select highlight(), year from movies where match('the dog');

select highlight(), year from movies where match('days') facet year;

select * from movies where match('google');

完整文档和开源代码,可以移步:

  • https://github.com/manticoresoftware/manticoresearch

来源:github.com/manticoresoftware/manticoresearch

—END—


http://www.kler.cn/a/527399.html

相关文章:

  • Java内存模型 volatile 线程安全
  • hive:基本数据类型,关于表和列语法
  • 01-时间与管理
  • 使用 Context API 管理临时状态,避免 Redux/Zustand 的持久化陷阱
  • dify实现原理分析-rag-检索(Retrieval)服务的实现
  • ping命令详解Type 8和0 或者Type 3
  • ARM嵌入式学习--第十一天(中断处理 , ADC)
  • 编程大模型之—Qwen2.5-Coder
  • JVM方法区
  • Array,String,Number
  • ZZNUOJ(C/C++)基础练习1021——1030(详解版)
  • 白话DeepSeek-R1论文(二)| DeepSeek-R1:AI “升级打怪”,从“自学成才”到“全面发展”!
  • 数据结构-Stack和栈
  • python学opencv|读取图像(五十二)使用cv.matchTemplate()函数实现最佳图像匹配
  • FBX SDK的使用:基础知识
  • mysql索引snkw
  • 数组排序算法
  • 感悟人生路
  • Springboot项目开发的通用集成
  • 白话DeepSeek-R1论文(一)|AI的顿悟时刻:DeepSeek-R1-Zero 纯强化学习解锁推理新境界
  • AnyThingLLM本地私有知识库搭建
  • HIVE介绍(五)_hive limit
  • 为AI聊天工具添加一个知识系统 之81 详细设计之22 符号逻辑 之2
  • (笔记+作业)书生大模型实战营春节卷王班---L0G2000 Python 基础知识
  • 青少年编程与数学 02-008 Pyhon语言编程基础 09课题、布尔与判断语句
  • DeepSeek能执行程序吗?