doris:高并发导入优化(Group Commit)
在高频小批量写入场景下,传统的导入方式存在以下问题:
- 每个导入都会创建一个独立的事务,都需要经过 FE 解析 SQL 和生成执行计划,影响整体性能
- 每个导入都会生成一个新的版本,导致版本数快速增长,增加了后台compaction的压力
为了解决这些问题,Doris 引入了 Group Commit 机制。Group Commit 不是一种新的导入方式,而是对现有导入方式的优化扩展,主要针对:
INSERT INTO tbl VALUES(...)
语句- Stream Load 导入
通过将多个小批量导入在后台合并成一个大的事务提交,显著提升了高并发小批量写入的性能。同时,Group Commit 与 PreparedStatement 结合使用可以获得更高的性能提升。
Group Commit 模式
Group Commit 写入有三种模式,分别是:
-
关闭模式(
off_mode
)不开启 Group Commit。
-
同步模式(
sync_mode
)Doris 根据负载和表的
group_commit_interval
属性将多个导入在一个事务提交,事务提交后导入返回。这适用于高并发写入场景,且在导入完成后要求数据立即可见。 -
异步模式(
async_mode
)Doris 首先将数据写入 WAL (
Write Ahead Log
),然后导入立即返回。Doris 会根据负载和表的group_commit_interval
属性异步提交数据,提交之后数据可见。为了防止 WAL 占用较大的磁盘空间,单次导入数据量较大时,会自动切换为sync_mode
。这适用于写入延迟敏感以及高频写入的场景。WAL的数量可以通过FE http接口查看,具体可见这里,也可以在BE的metrics中搜索关键词
wal
查看。
Group Commit 使用方式
假如表的结构为:
CREATE TABLE `dt` (
`id` int(11) NOT NULL,
`name` varchar(50) NULL,
`score` int(11) NULL
) ENGINE=OLAP
DUPLICATE KEY(`id`)
DISTRIBUTED BY HASH(`id`) BUCKETS 1
PROPERTIES (
"replication_num" = "1"
);
使用 JDBC
当用户使用 JDBC insert into values
方式写入时,为了减少 SQL 解析和生成规划的开销,我们在 FE 端支持了 MySQL 协议的 PreparedStatement
特性。当使用 PreparedStatement
时,SQL 和其导入规划将被缓存到 Session 级别的内存缓存中,后续的导入直接使用缓存对象,降低了 FE 的 CPU 压力。下面是在 JDBC 中使用 PreparedStatement
的例子:
1. 设置 JDBC URL 并在 Server 端开启 Prepared Statement
url = jdbc:mysql://127.0.0.1:9030/db?useServerPrepStmts=true&useLocalSessionState=true&rewriteBatchedStatements=true&cachePrepStmts=true&prepStmtCacheSqlLimit=99999&prepStmtCacheSize=500
2. 配置 group_commit
session 变量,有如下两种方式:
- 通过 JDBC url 设置,增加
sessionVariables=group_commit=async_mode
url = jdbc:mysql://127.0.0.1:9030/db?useServerPrepStmts=true&useLocalSessionState=true&rewriteBatchedStatements=true&cachePrepStmts=true&prepStmtCacheSqlLimit=99999&prepStmtCacheSize=500&sessionVariables=group_commit=async_mode
- 通过执行 SQL 设置
try (Statement statement = conn.createStatement()) {
statement.execute("SET group_commit = async_mode;");
}
3. 使用 PreparedStatement
private static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
private static final String URL_PATTERN = "jdbc:mysql://%s:%d/%s?useServerPrepStmts=true&useLocalSessionState=true&rewriteBatchedStatements=true&cachePrepStmts=true&prepStmtCacheSqlLimit=99999&prepStmtCacheSize=50$sessionVariables=group_commit=async_mode";
private static final String HOST = "127.0.0.1";
private static final int PORT = 9087;
private static final String DB = "db";
private static final String TBL = "dt";
private static final String USER = "root";
private static final String PASSWD = "";
private static final int INSERT_BATCH_SIZE = 10;
private static void groupCommitInsertBatch() throws Exception {
Class.forName(JDBC_DRIVER);
// add rewriteBatchedStatements=true and cachePrepStmts=true in JDBC url
// set session variables by sessionVariables=group_commit=async_mode in JDBC url
try (Connection conn = DriverManager.getConnection(
String.format(URL_PATTERN, HOST, PORT, DB), USER, PASSWD)) {
String query = "insert into " + TBL + " values(?, ?, ?)";
try (PreparedStatement stmt = conn.prepareStatement(query)) {
for (int j = 0; j < 5; j++) {
// 10 rows per insert
for (int i = 0; i < INSERT_BATCH_SIZE; i++) {
stmt.setInt(1, i);
stmt.setString(2, "name" + i);
stmt.setInt(3, i + 10);
stmt.addBatch();
}
int[] result = stmt.executeBatch();
}
}
} catch (Exception e) {
e.printStackTrace();
}
}
注意:由于高频的insert into语句会打印大量的audit log,对最终性能有一定影响,默认关闭了打印prepared语句的audit log。可以通过设置session variable的方式控制是否打印prepared语句的audit log。
# 配置 session 变量开启打印parpared语句的audit log, 默认为false即关闭打印parpared语句的audit log。
set enable_prepared_stmt_audit_log=true;
关于 JDBC 的更多用法,参考使用 Insert 方式同步数据。
使用Golang进行Group Commit
Golang的prepared语句支持有限,所以我们可以通过手动客户端攒批的方式提高Group Commit的性能,以下为一个示例程序。
package main
import (
"database/sql"
"fmt"
"math/rand"
"strings"
"sync"
"sync/atomic"
"time"
_ "github.com/go-sql-driver/mysql"
)
const (
host = "127.0.0.1"
port = 9038
db = "test"
user = "root"
password = ""
table = "async_lineitem"
)
var (
threadCount = 20
batchSize = 100
)
var totalInsertedRows int64
var rowsInsertedLastSecond int64
func main() {
dbDSN := fmt.Sprintf("%s:%s@tcp(%s:%d)/%s?parseTime=true", user, password, host, port, db)
db, err := sql.Open("mysql", dbDSN)
if err != nil {
fmt.Printf("Error opening database: %s\n", err)
return
}
defer db.Close()
var wg sync.WaitGroup
for i := 0; i < threadCount; i++ {
wg.Add(1)
go func() {
defer wg.Done()
groupCommitInsertBatch(db)
}()
}
go logInsertStatistics()
wg.Wait()
}
func groupCommitInsertBatch(db *sql.DB) {
for {
valueStrings := make([]string, 0, batchSize)
valueArgs := make([]interface{}, 0, batchSize*16)
for i := 0; i < batchSize; i++ {
valueStrings = append(valueStrings, "(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)")
valueArgs = append(valueArgs, rand.Intn(1000))
valueArgs = append(valueArgs, rand.Intn(1000))
valueArgs = append(valueArgs, rand.Intn(1000))
valueArgs = append(valueArgs, rand.Intn(1000))
valueArgs = append(valueArgs, sql.NullFloat64{Float64: 1.0, Valid: true})
valueArgs = append(valueArgs, sql.NullFloat64{Float64: 1.0, Valid: true})
valueArgs = append(valueArgs, sql.NullFloat64{Float64: 1.0, Valid: true})
valueArgs = append(valueArgs, sql.NullFloat64{Float64: 1.0, Valid: true})
valueArgs = append(valueArgs, "N")
valueArgs = append(valueArgs, "O")
valueArgs = append(valueArgs, time.Now())
valueArgs = append(valueArgs, time.Now())
valueArgs = append(valueArgs, time.Now())
valueArgs = append(valueArgs, "DELIVER IN PERSON")
valueArgs = append(valueArgs, "SHIP")
valueArgs = append(valueArgs, "N/A")
}
stmt := fmt.Sprintf("INSERT INTO %s VALUES %s",
table, strings.Join(valueStrings, ","))
_, err := db.Exec(stmt, valueArgs...)
if err != nil {
fmt.Printf("Error executing batch: %s\n", err)
return
}
atomic.AddInt64(&rowsInsertedLastSecond, int64(batchSize))
atomic.AddInt64(&totalInsertedRows, int64(batchSize))
}
}
func logInsertStatistics() {
for {
time.Sleep(1 * time.Second)
fmt.Printf("Total inserted rows: %d\n", totalInsertedRows)
fmt.Printf("Rows inserted in the last second: %d\n", rowsInsertedLastSecond)
rowsInsertedLastSecond = 0
}
}
INSERT INTO VALUES
- 异步模式
# 配置 session 变量开启 group commit (默认为 off_mode),开启异步模式
mysql> set group_commit = async_mode;
# 这里返回的 label 是 group_commit 开头的,可以区分出是否使用了 group commit
mysql> insert into dt values(1, 'Bob', 90), (2, 'Alice', 99);
Query OK, 2 rows affected (0.05 sec)
{'label':'group_commit_a145ce07f1c972fc-bd2c54597052a9ad', 'status':'PREPARE', 'txnId':'181508'}
# 可以看出这个 label, txn_id 和上一个相同,说明是攒到了同一个导入任务中
mysql> insert into dt(id, name) values(3, 'John');
Query OK, 1 row affected (0.01 sec)
{'label':'group_commit_a145ce07f1c972fc-bd2c54597052a9ad', 'status':'PREPARE', 'txnId':'181508'}
# 不能立刻查询到
mysql> select * from dt;
Empty set (0.01 sec)
# 10 秒后可以查询到,可以通过表属性 group_commit_interval 控制数据可见延迟。
mysql> select * from dt;
+------+-------+-------+
| id | name | score |
+------+-------+-------+
| 1 | Bob | 90 |
| 2 | Alice | 99 |
| 3 | John | NULL |
+------+-------+-------+
3 rows in set (0.02 sec)
- 同步模式
# 配置 session 变量开启 group commit (默认为 off_mode),开启同步模式
mysql> set group_commit = sync_mode;
# 这里返回的 label 是 group_commit 开头的,可以区分出是否谁用了 group commit,导入耗时至少是表属性 group_commit_interval。
mysql> insert into dt values(4, 'Bob', 90), (5, 'Alice', 99);
Query OK, 2 rows affected (10.06 sec)
{'label':'group_commit_d84ab96c09b60587_ec455a33cb0e9e87', 'status':'PREPARE', 'txnId':'3007', 'query_id':'fc6b94085d704a94-a69bfc9a202e66e2'}
# 数据可以立刻读出
mysql> select * from dt;
+------+-------+-------+
| id | name | score |
+------+-------+-------+
| 1 | Bob | 90 |
| 2 | Alice | 99 |
| 3 | John | NULL |
| 4 | Bob | 90 |
| 5 | Alice | 99 |
+------+-------+-------+
5 rows in set (0.03 sec)
- 关闭模式
mysql> set group_commit = off_mode;
Stream Load
假如data.csv
的内容为:
6,Amy,60
7,Ross,98
- 异步模式
# 导入时在 header 中增加"group_commit:async_mode"配置
curl --location-trusted -u {user}:{passwd} -T data.csv -H "group_commit:async_mode" -H "column_separator:," http://{fe_host}:{http_port}/api/db/dt/_stream_load
{
"TxnId": 7009,
"Label": "group_commit_c84d2099208436ab_96e33fda01eddba8",
"Comment": "",
"GroupCommit": true,
"Status": "Success",
"Message": "OK",
"NumberTotalRows": 2,
"NumberLoadedRows": 2,
"NumberFilteredRows": 0,
"NumberUnselectedRows": 0,
"LoadBytes": 19,
"LoadTimeMs": 35,
"StreamLoadPutTimeMs": 5,
"ReadDataTimeMs": 0,
"WriteDataTimeMs": 26
}
# 返回的 GroupCommit 为 true,说明进入了 group commit 的流程
# 返回的 Label 是 group_commit 开头的,是真正消费数据的导入关联的 label
- 同步模式
# 导入时在 header 中增加"group_commit:sync_mode"配置
curl --location-trusted -u {user}:{passwd} -T data.csv -H "group_commit:sync_mode" -H "column_separator:," http://{fe_host}:{http_port}/api/db/dt/_stream_load
{
"TxnId": 3009,
"Label": "group_commit_d941bf17f6efcc80_ccf4afdde9881293",
"Comment": "",
"GroupCommit": true,
"Status": "Success",
"Message": "OK",
"NumberTotalRows": 2,
"NumberLoadedRows": 2,
"NumberFilteredRows": 0,
"NumberUnselectedRows": 0,
"LoadBytes": 19,
"LoadTimeMs": 10044,
"StreamLoadPutTimeMs": 4,
"ReadDataTimeMs": 0,
"WriteDataTimeMs": 10038
}
# 返回的 GroupCommit 为 true,说明进入了 group commit 的流程
# 返回的 Label 是 group_commit 开头的,是真正消费数据的导入关联的 label
关于 Stream Load 使用的更多详细语法及最佳实践,请参阅 Stream Load。
自动提交条件
当满足时间间隔 (默认为 10 秒) 或数据量 (默认为 64 MB) 其中一个条件时,会自动提交数据。这两个参数需要配合使用,建议根据实际场景进行调优。
修改提交间隔
默认提交间隔为 10 秒,用户可以通过修改表的配置调整:
# 修改提交间隔为 2 秒
ALTER TABLE dt SET ("group_commit_interval_ms" = "2000");
参数调整建议:
-
较短的间隔(如2秒):
- 优点:数据可见性延迟更低,适合对实时性要求较高的场景
- 缺点:提交次数增多,版本数增长更快,后台compaction压力更大
-
较长的间隔(如30秒):
- 优点:提交批次更大,版本数增长更慢,系统开销更小
- 缺点:数据可见性延迟更高
建议根据业务对数据可见性延迟的容忍度来设置,如果系统压力大,可以适当增加间隔。
修改提交数据量
Group Commit 的默认提交数据量为 64 MB,用户可以通过修改表的配置调整:
# 修改提交数据量为 128MB
ALTER TABLE dt SET ("group_commit_data_bytes" = "134217728");
参数调整建议:
-
较小的阈值(如32MB):
- 优点:内存占用更少,适合资源受限的环境
- 缺点:提交批次较小,吞吐量可能受限
-
较大的阈值(如256MB):
- 优点:批量提交效率更高,系统吞吐量更大
- 缺点:占用更多内存
建议根据系统内存资源和数据可靠性要求来权衡。如果内存充足且追求更高吞吐,可以适当增加到128MB或更大。
相关系统配置
BE 配置
-
group_commit_wal_path
-
描述:group commit 存放 WAL 文件的目录
-
默认值:默认在用户配置的
storage_root_path
的各个目录下创建一个名为wal
的目录。配置示例:
group_commit_wal_path=/data1/storage/wal;/data2/storage/wal;/data3/storage/wal
-
-
group_commit_memory_rows_for_max_filter_ratio
-
描述:当 group commit 导入的总行数不高于该值,
max_filter_ratio
正常工作,否则不工作 -
默认值:10000
-
使用限制
-
Group Commit 限制条件
-
INSERT INTO VALUES
语句在以下情况下会退化为非 Group Commit 方式:- 使用事务写入 (
Begin; INSERT INTO VALUES; COMMIT
) - 指定 Label (
INSERT INTO dt WITH LABEL {label} VALUES
) - VALUES 中包含表达式 (
INSERT INTO dt VALUES (1 + 100)
) - 列更新写入
- 表不支持轻量级模式更改
- 使用事务写入 (
-
Stream Load
在以下情况下会退化为非 Group Commit 方式:- 使用两阶段提交
- 指定 Label (
-H "label:my_label"
) - 列更新写入
- 表不支持轻量级模式更改
-
-
Unique 模型
- Group Commit 不保证提交顺序,建议使用 Sequence 列来保证数据一致性。
-
max_filter_ratio 支持
- 默认导入中,
filter_ratio
通过失败行数和总行数计算。 - Group Commit 模式下,
max_filter_ratio
在总行数不超过group_commit_memory_rows_for_max_filter_ratio
时有效。
- 默认导入中,
-
WAL 限制
async_mode
写入会将数据写入 WAL,成功后删除,失败时通过 WAL 恢复。- WAL 文件是单副本存储的,如果对应磁盘损坏或文件误删可能导致数据丢失。
- 下线 BE 节点时,使用
DECOMMISSION
命令以防数据丢失。 async_mode
在以下情况下切换为sync_mode
:- 导入数据量过大(超过 WAL 单目录 80% 空间)
- 不知道数据量的 chunked stream load
- 磁盘可用空间不足
- 重量级 Schema Change 时,拒绝 Group Commit 写入,客户端需重试。
性能
我们分别测试了使用Stream Load
和JDBC
在高并发小数据量场景下group commit
(使用async mode
) 的写入性能。
Stream Load 日志场景测试
机器配置
-
1 台 FE:阿里云 8 核 CPU、16GB 内存、1 块 100GB ESSD PL1 云磁盘
-
3 台 BE:阿里云 16 核 CPU、64GB 内存、1 块 1TB ESSD PL1 云磁盘
-
1 台测试客户端:阿里云 16 核 CPU、64GB 内存、1 块 100GB ESSD PL1 云磁盘
-
测试版本为Doris-2.1.5
数据集
httplogs
数据集,总共 31GB、2.47 亿条
测试工具
- doris-streamloader
测试方法
- 对比
非 group_commit
和group_commit
的async_mode
模式下,设置不同的单并发数据量和并发数,导入247249096
行数据
测试结果
导入方式 | 单并发数据量 | 并发数 | 耗时 (秒) | 导入速率 (行/秒) | 导入吞吐 (MB/秒) |
---|---|---|---|---|---|
group_commit | 10 KB | 10 | 3306 | 74,787 | 9.8 |
group_commit | 10 KB | 30 | 3264 | 75,750 | 10.0 |
group_commit | 100 KB | 10 | 424 | 582,447 | 76.7 |
group_commit | 100 KB | 30 | 366 | 675,543 | 89.0 |
group_commit | 500 KB | 10 | 187 | 1,318,661 | 173.7 |
group_commit | 500 KB | 30 | 183 | 1,351,087 | 178.0 |
group_commit | 1 MB | 10 | 178 | 1,385,148 | 182.5 |
group_commit | 1 MB | 30 | 178 | 1,385,148 | 182.5 |
group_commit | 10 MB | 10 | 177 | 1,396,887 | 184.0 |
非group_commit | 1 MB | 10 | 2824 | 87,536 | 11.5 |
非group_commit | 10 MB | 10 | 450 | 549,442 | 68.9 |
非group_commit | 10 MB | 30 | 177 | 1,396,887 | 184.0 |
在上面的group_commit
测试中,BE 的 CPU 使用率在 10-40% 之间。
可以看出,group_commit
模式在小数据量并发导入的场景下,能有效的提升导入性能,同时减少版本数,降低系统合并数据的压力。
JDBC
机器配置
-
1 台 FE:阿里云 8 核 CPU、16GB 内存、1 块 100GB ESSD PL1 云磁盘
-
1 台 BE:阿里云 16 核 CPU、64GB 内存、1 块 500GB ESSD PL1 云磁盘
-
1 台测试客户端:阿里云 16 核 CPU、64GB 内存、1 块 100GB ESSD PL1 云磁盘
-
测试版本为Doris-2.1.5
-
关闭打印parpared语句的audit log以提高性能
数据集
- tpch sf10
lineitem
表数据集,30 个文件,总共约 22 GB,1.8 亿行
测试工具
- DataX
测试方法
- 通过
txtfilereader
向mysqlwriter
写入数据,配置不同并发数和单个INSERT
的行数
测试结果
单个 insert 的行数 | 并发数 | 导入速率 (行/秒) | 导入吞吐 (MB/秒) |
---|---|---|---|
100 | 10 | 107,172 | 11.47 |
100 | 20 | 140,317 | 14.79 |
100 | 30 | 142,882 | 15.28 |
在上面的测试中,FE 的 CPU 使用率在 60-70% 左右,BE 的 CPU 使用率在 10-20% 左右。 |
Insert into sync 模式小批量数据
机器配置
-
1 台 FE:阿里云 16 核 CPU、64GB 内存、1 块 500GB ESSD PL1 云磁盘
-
5 台 BE:阿里云 16 核 CPU、64GB 内存、1 块 1TB ESSD PL1 云磁盘。
-
1 台测试客户端:阿里云 16 核 CPU、64GB 内存、1 块 100GB ESSD PL1 云磁盘
-
测试版本为Doris-2.1.5
数据集
-
tpch sf10
lineitem
表数据集。 -
建表语句为
CREATE TABLE IF NOT EXISTS lineitem (
L_ORDERKEY INTEGER NOT NULL,
L_PARTKEY INTEGER NOT NULL,
L_SUPPKEY INTEGER NOT NULL,
L_LINENUMBER INTEGER NOT NULL,
L_QUANTITY DECIMAL(15,2) NOT NULL,
L_EXTENDEDPRICE DECIMAL(15,2) NOT NULL,
L_DISCOUNT DECIMAL(15,2) NOT NULL,
L_TAX DECIMAL(15,2) NOT NULL,
L_RETURNFLAG CHAR(1) NOT NULL,
L_LINESTATUS CHAR(1) NOT NULL,
L_SHIPDATE DATE NOT NULL,
L_COMMITDATE DATE NOT NULL,
L_RECEIPTDATE DATE NOT NULL,
L_SHIPINSTRUCT CHAR(25) NOT NULL,
L_SHIPMODE CHAR(10) NOT NULL,
L_COMMENT VARCHAR(44) NOT NULL
)
DUPLICATE KEY(L_ORDERKEY, L_PARTKEY, L_SUPPKEY, L_LINENUMBER)
DISTRIBUTED BY HASH(L_ORDERKEY) BUCKETS 32
PROPERTIES (
"replication_num" = "3"
);
测试工具
- Jmeter
需要设置的jmeter参数如下图所示
- 设置测试前的init语句,
set group_commit=async_mode
以及set enable_nereids_planner=false
。 - 开启jdbc的prepared statement,完整的url为
jdbc:mysql://127.0.0.1:9030?useServerPrepStmts=true&useLocalSessionState=true&rewriteBatchedStatements=true&cachePrepStmts=true&prepStmtCacheSqlLimit=99999&prepStmtCacheSize=50&sessionVariables=group_commit=async_mode&sessionVariables=enable_nereids_planner=false
。 - 设置导入类型为prepared update statement。
- 设置导入语句。
- 设置每次需要导入的值,注意,导入的值与导入值的类型要一一匹配。
测试方法
- 通过
Jmeter
向Doris
写数据。每个并发每次通过insert into写入1行数据。
测试结果
-
数据单位为行每秒。
-
以下测试分为30,100,500并发。
30并发sync模式5个BE3副本性能测试
Group commit internal | 10ms | 20ms | 50ms | 100ms |
---|---|---|---|---|
321.5 | 307.3 | 285.8 | 224.3 |
100并发sync模式性能测试
Group commit internal | 10ms | 20ms | 50ms | 100ms |
---|---|---|---|---|
1175.2 | 1108.7 | 1016.3 | 704.5 |
500并发sync模式性能测试
Group commit internal | 10ms | 20ms | 50ms | 100ms |
---|---|---|---|---|
3289.8 | 3686.7 | 3280.7 | 2609.2 |
Insert into sync 模式大批量数据
机器配置
-
1 台 FE:阿里云 16 核 CPU、64GB 内存、1 块 500GB ESSD PL1 云磁盘
-
5 台 BE:阿里云 16 核 CPU、64GB 内存、1 块 1TB ESSD PL1 云磁盘。注:测试中分别用了1台,3台,5台BE进行测试。
-
1 台测试客户端:阿里云 16 核 CPU、64GB 内存、1 块 100GB ESSD PL1 云磁盘
-
测试版本为Doris-2.1.5
数据集
-
tpch sf10
lineitem
表数据集。 -
建表语句为
CREATE TABLE IF NOT EXISTS lineitem (
L_ORDERKEY INTEGER NOT NULL,
L_PARTKEY INTEGER NOT NULL,
L_SUPPKEY INTEGER NOT NULL,
L_LINENUMBER INTEGER NOT NULL,
L_QUANTITY DECIMAL(15,2) NOT NULL,
L_EXTENDEDPRICE DECIMAL(15,2) NOT NULL,
L_DISCOUNT DECIMAL(15,2) NOT NULL,
L_TAX DECIMAL(15,2) NOT NULL,
L_RETURNFLAG CHAR(1) NOT NULL,
L_LINESTATUS CHAR(1) NOT NULL,
L_SHIPDATE DATE NOT NULL,
L_COMMITDATE DATE NOT NULL,
L_RECEIPTDATE DATE NOT NULL,
L_SHIPINSTRUCT CHAR(25) NOT NULL,
L_SHIPMODE CHAR(10) NOT NULL,
L_COMMENT VARCHAR(44) NOT NULL
)
DUPLICATE KEY(L_ORDERKEY, L_PARTKEY, L_SUPPKEY, L_LINENUMBER)
DISTRIBUTED BY HASH(L_ORDERKEY) BUCKETS 32
PROPERTIES (
"replication_num" = "3"
);
测试工具
- Jmeter
测试方法
- 通过
Jmeter
向Doris
写数据。每个并发每次通过insert into写入1000行数据。
测试结果
-
数据单位为行每秒。
-
以下测试分为30,100,500并发。
30并发sync模式性能测试
Group commit internal | 10ms | 20ms | 50ms | 100ms |
---|---|---|---|---|
92.2K | 85.9K | 84K | 83.2K |
100并发sync模式性能测试
Group commit internal | 10ms | 20ms | 50ms | 100ms |
---|---|---|---|---|
70.4K | 70.5K | 73.2K | 69.4K |
500并发sync模式性能测试
Group commit internal | 10ms | 20ms | 50ms | 100ms |
---|---|---|---|---|
46.3K | 47.7K | 47.4K | 46.5K |