当前位置: 首页 > article >正文

本地运行大模型效果及配置展示

电脑上用ollama安装了qwen2.5:32b,deepseek-r1:32b,deepseek-r1:14b,llama3.1:8b四个模型,都是Q4_K_M量化版。
在这里插入图片描述
运行过程中主要是cpu和内存负载比较大,qwen2.5:32b大概需要22g,deepseek-r1:32b类似。显卡的运行状态在使用nouveau驱动的情况下使用cpu-x没有读取到。前段时间换成NVIDIA驱动后又试了下qwen2.5:32b, 使用nvidia-smi读取到了运行状态,之前会占用大量内存的情况现在也没有再出现,但输出速度几乎不变,不太确定正不正常。考虑到切换NVIDIA驱动后我的两块屏幕无法显示,加上其他一些arch用户在更新系统时遇到的和NVIDIA驱动相关的问题,我又切换回了nouveau。

运行效果方面的话,两个32b的模型的效果是最好的,一些复杂问题的准确性也比两个要高,但是速度也是最慢的,对我来说属于勉强能用,如果速度能达到10 tokens/s的话,用起来就比较流畅了。

环境及配置

  • 系统::Arch Linux
  • CPU: AMD Ryzen 7 5800H with Radeon Graphics (16) @ 4.463GHz
  • GPU: AMD ATI Radeon Vega Series / Radeon Vega Mobile Series
  • GPU: NVIDIA GeForce RTX 3050 Ti Mobile / Max-Q
  • GPU驱动:nouveau
  • 内存: 64G (32x2) DDR4 3200MHZ

qwen2.5:32b
在这里插入图片描述
deepseek-r1:32b
在这里插入图片描述
llama3.1:8b
在这里插入图片描述

一些术语解释

Total Duration:
The total time it took the model to complete the task. This includes all processing time.

Load Duration:
The model’s time to load or initialize before starting the task.

Prompt Eval Count:
The number of tokens (individual words or sub-word units) in the input prompt given to the model.

Prompt Eval Duration:
he model’s time to process and understand the input prompt.

Prompt Eval Rate:
The speed at which the model processed the input prompt, measured in tokens per second.

Eval Count:
The total number of tokens the model processes during the entire task, including both the prompt and the generated output.

Eval Duration:
The model’s time to process all the tokens during the task.

Eval Rate:
The overall processing speed of the model during the task, measured in tokens per second.


http://www.kler.cn/a/527912.html

相关文章:

  • 快速提升网站收录:利用网站内链布局
  • 线段树 算法
  • zsh安装插件
  • 基于单片机的超声波液位检测系统(论文+源码)
  • 【Rust自学】15.1. 使用Box<T>智能指针来指向堆内存上的数据
  • linux用户管理
  • 牛客周赛 Round 77
  • Java 16进制 10进制 2进制数 相互的转换
  • 数据分析系列--⑦RapidMiner模型评价(基于泰坦尼克号案例含数据集)
  • 通过.yml文件创建环境
  • 反射、枚举以及lambda表达式
  • Ubuntu下的Doxygen+VScode实现C/C++接口文档自动生成
  • 想品客老师的第九天:原型和继承
  • Nginx代理
  • 面试回顾——1
  • JAVA实战开源项目:房屋租赁系统(Vue+SpringBoot) 附源码
  • Visual RAG: Expanding MLLM visual knowledge without fine-tuning 论文简介
  • 【文件整理】文件命名、存放、分类建议
  • JDK的动态代理:深入理解与实践
  • keil5如何添加.h 和.c文件,以及如何添加文件夹
  • 安装Maven(安装包+步骤)
  • 扶摇计划--从失业的寒冬,慢慢的走出来
  • PID 温控设计(基于 STC51)
  • 网络工程师 (9)文件管理
  • JavaScript闭包深入剖析:性能剖析与优化技巧
  • Windows系统本地部署deepseek 更改目录