【Java异步编程】基于任务类型创建不同的线程池
文章目录
- 一. 按照任务类型对线程池进行分类
- 1. IO密集型任务的线程数
- 2. CPU密集型任务的线程数
- 3. 混合型任务的线程数
- 二. 线程数越多越好吗
- 三. Redis 单线程的高效性
使用线程池的好处主要有以下三点:
- 降低资源消耗:线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,通过重复利用已创建的线程可以降低线程创建和销毁造成的消耗。
- 提高响应速度:当任务到达时,可以不需要等待线程创建就能立即执行。
- 提高线程的可管理性:线程池提供了一种限制、管理资源的策略,维护一些基本的线程统计信息,如已完成任务的数量等。通过线程池可以对线程资源进行统一的分配、监控和调优。
虽然使用线程池的好处很多,但是如果其线程数配置得不合理,不仅可能达不到预期效果,反而可能降低应用的性能。接下来按照不同的任务类型来配置线程池。
一. 按照任务类型对线程池进行分类
使用标准构造器ThreadPoolExecutor创建线程池时,会涉及线程数的配置,而线程数的配置与异步任务类型是分不开的。这里将线程池的异步任务大致分为以下三类:
- IO密集型任务此类任务主要是执行IO操作。由于执行IO操作的时间较长,导致CPU的利用率不高,这类任务CPU常处于空闲状态。Netty的IO读写操作为此类任务的典型例子。
- CPU密集型任务此类任务主要是执行计算任务。由于响应时间很快,CPU一直在运行,这种任务CPU的利用率很高。
- 混合型任务此类任务既要执行逻辑计算,又要进行IO操作(如RPC调用、数据库访问)。
相对来说,由于执行IO操作的耗时较长(一次网络往返往往在数百毫秒级别),这类任务的CPU利用率也不是太高。Web服务器的HTTP请求处理操作为此类任务的典型例子。一般情况下,针对以上不同类型的异步任务需要创建不同类型的线程池,并进行针对性的参数配置。
1. IO密集型任务的线程数
由于IO密集型任务的CPU使用率较低,导致线程空余时间很多,因此通常需要开CPU核心数两倍的线程。当IO线程空闲时,可以启用其他线程继续使用CPU,以提高CPU的使用率。
@Slf4j
//懒汉式单例创建线程池:用于IO密集型任务
public class IoIntenseTargetThreadPoolLazyHolder {
/**
* IO线程池最大线程数
*/
public static final int IO_MAX = Math.max(2, CPU_COUNT * 2);
/**
* 空闲保活时限,单位秒
*/
public static final int KEEP_ALIVE_SECONDS = 30;
/**
* 有界队列size
*/
public static final int QUEUE_SIZE = 10000;
//线程池: 用于IO密集型任务
public static final ThreadPoolExecutor EXECUTOR = new ThreadPoolExecutor(
IO_MAX,
IO_MAX,
KEEP_ALIVE_SECONDS,
TimeUnit.SECONDS,
new LinkedBlockingQueue(QUEUE_SIZE),
new ThreadUtil.CustomThreadFactory("io"));
public static ThreadPoolExecutor getInnerExecutor() {
return EXECUTOR;
}
static {
log.info("线程池已经初始化");
EXECUTOR.allowCoreThreadTimeOut(true);
//JVM关闭时的钩子函数
Runtime.getRuntime().addShutdownHook(
new ShutdownHookThread("IO密集型任务线程池", new Callable<Void>() {
@Override
public Void call() throws Exception {
//优雅关闭线程池
shutdownThreadPoolGracefully(EXECUTOR);
return null;
}
}));
}
}
有以下几点需要注意
- 调用allowCoreThreadTimeOut,传入了参数true,应用于核心线程,当池中的线程长时间空闲时,可以自行销毁。
- 使用有界队列缓冲任务而不是无界队列,如果128太小,可以根据具体需要进行增大,但是不能使用无界队列。
- corePoolSize和maximumPoolSize保持一致,使得在接收到新任务时,如果没有空闲工作线程,就优先创建新的线程去执行新任务,而不是优先加入阻塞队列,等待现有工作线程空闲后再执行。
- 使用JVM关闭时的钩子函数优雅地自动关闭线程池。
2. CPU密集型任务的线程数
CPU密集型任务也叫计算密集型任务,其特点是要进行大量计算而需要消耗CPU资源,比如计算圆周率、对视频进行高清解码等。
CPU密集型任务虽然也可以并行完成,但是并行的任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以要最高效地利用CPU,CPU密集型任务并行执行的数量应当等于CPU的核心数。
/**
* CPU核数
**/
public static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
public static final int MAXIMUM_POOL_SIZE = CPU_COUNT;
//线程池: 用于CPU密集型任务
private static final ThreadPoolExecutor EXECUTOR = new ThreadPoolExecutor(
MAXIMUM_POOL_SIZE,
MAXIMUM_POOL_SIZE,
KEEP_ALIVE_SECONDS,
TimeUnit.SECONDS,
new LinkedBlockingQueue(QUEUE_SIZE),
new CustomThreadFactory("cpu"));
public static ThreadPoolExecutor getInnerExecutor() {
return EXECUTOR;
}
static {
log.info("线程池已经初始化");
EXECUTOR.allowCoreThreadTimeOut(true);
//JVM关闭时的钩子函数
Runtime.getRuntime().addShutdownHook(
new ShutdownHookThread("CPU密集型任务线程池", new Callable<Void>() {
@Override
public Void call() throws Exception {
//优雅关闭线程池
shutdownThreadPoolGracefully(EXECUTOR);
return null;
}
}));
}
3. 混合型任务的线程数
混合型任务既要执行逻辑计算,又要进行大量非CPU耗时操作(如RPC调用、数据库访问、网络通信等),所以混合型任务CPU的利用率不是太高,非CPU耗时往往是CPU耗时的数倍。
比如在Web应用中处理HTTP请求时,一次请求处理会包括DB操作、RPC操作、缓存操作等多种耗时操作。一般来说,一次Web请求的CPU计算耗时往往较少,大致在100~500毫秒,而其他耗时操作会占用500~1000毫秒,甚至更多的时间。
在为混合型任务创建线程池时,如何确定线程数呢?业界有一个比较成熟的估算公式,具体如下:
最佳线程数 = ((线程等待时间+线程CPU时间) / 线程CPU时间) * CPU核数
通过公式可以看出:等待时间所占的比例越高,需要的线程就越多;CPU耗时所占的比例越高,需要的线程就越少。
下面举一个例子:
比如在Web服务器处理HTTP请求时,假设平均线程CPU运行时间为100毫秒,而线程等待时间(比如包括DB操作、RPC操作、缓存操作等)为900毫秒,如果CPU核数为8,那么根据上面这个公式,估算如下:
(900毫秒 + 100毫秒) / 100毫秒 * 8 = 10 * 8 = 80
二. 线程数越多越好吗
很多小伙伴认为,线程数越高越好。那么,使用很多线程是否就一定比单线程高效呢?答案是否定的。
虽然多线程在一些并发场景下能带来性能提升,但过多的线程并不意味着性能必定提升。线程数过高可能导致一些问题:
上下文切换(Context Switching): 每个线程的执行都由操作系统调度,线程切换会带来额外的开销。当线程数过多时,操作系统频繁地在不同线程间切换,导致 上下文切换 成本增加,这样反而可能降低系统的整体效率。
资源争用: 多线程同时访问共享资源时,可能会遇到 资源竞争 和 锁竞争,特别是在 CPU 绑定的任务中。线程之间的协作和同步会称为性能瓶颈。
内存开销: 每个线程需要占用一定的内存,维护线程栈、调度信息等,过多的线程会消耗大量的内存和系统资源,这可能会导致系统性能下降,甚至造成内存溢出。
三. Redis 单线程的高效性
Redis 是一个 单线程 的高性能数据库,许多人可能会觉得它的设计不合常理,为什么不使用多线程来提升性能呢?然而,Redis 使用单线程反而能够达到极高的吞吐量,这是因为:
特点 | 核心内容 |
---|---|
1. 避免多线程上下文切换 | 单线程模型避免了线程切换的开销,任务按顺序处理,简化了并发控制,避免了锁竞争和死锁问题。 |
2. 非阻塞设计 | 采用事件驱动和 I/O 多路复用技术,非阻塞处理请求。如果一个请求需要等待外部资源(如网络 I/O),Redis 会把控制权交给其他请求,而不是阻塞线程。这种方式避免了多线程中因为等待 I/O 资源导致的线程空闲,充分利用了 CPU 的时间片。 |
3. CPU vs I/O 密集型 | Redis 的大多数操作(如 GET/SET)是 I/O 密集型 的,单线程在 I/O 密集型应用中有优势。 |
4. 数据访问模式 | Redis 操作主要是内存访问,内存操作速度快,单线程执行时没有同步问题,数据结构(如哈希表、跳表等)高效。 |