【LLM-agent】(task4)搜索引擎Agent
note
- 新增工具:搜索引擎Agent
文章目录
- note
- 一、搜索引擎Agent
- Reference
一、搜索引擎Agent
import os
from dotenv import load_dotenv
# 加载环境变量
load_dotenv()
# 初始化变量
base_url = None
chat_model = None
api_key = None
# 使用with语句打开文件,确保文件使用完毕后自动关闭
env_path = "/Users/guomiansheng/Desktop/LLM/llm_app/wow-agent/.env.txt"
with open(env_path, 'r') as file:
# 逐行读取文件
for line in file:
# 移除字符串头尾的空白字符(包括'\n')
line = line.strip()
# 检查并解析变量
if "base_url" in line:
base_url = line.split('=', 1)[1].strip().strip('"')
elif "chat_model" in line:
chat_model = line.split('=', 1)[1].strip().strip('"')
elif "ZHIPU_API_KEY" in line:
api_key = line.split('=', 1)[1].strip().strip('"')
elif "BOCHA_API_KEY" in line:
BOCHA_API_KEY = line.split('=', 1)[1].strip().strip('"')
# 打印变量以验证
print(f"base_url: {base_url}")
print(f"chat_model: {chat_model}")
print(f"ZHIPU_API_KEY: {api_key}")
from openai import OpenAI
client = OpenAI(
api_key = api_key,
base_url = base_url
)
print(client)
def get_completion(prompt):
response = client.chat.completions.create(
model="glm-4-flash", # 填写需要调用的模型名称
messages=[
{"role": "user", "content": prompt},
],
)
return response.choices[0].message.content
# 一、定义上个task的llm
from openai import OpenAI
from pydantic import Field # 导入Field,用于Pydantic模型中定义字段的元数据
from llama_index.core.llms import (
CustomLLM,
CompletionResponse,
LLMMetadata,
)
from llama_index.core.embeddings import BaseEmbedding
from llama_index.core.llms.callbacks import llm_completion_callback
from typing import List, Any, Generator
# 定义OurLLM类,继承自CustomLLM基类
class OurLLM(CustomLLM):
api_key: str = Field(default=api_key)
base_url: str = Field(default=base_url)
model_name: str = Field(default=chat_model)
client: OpenAI = Field(default=None, exclude=True) # 显式声明 client 字段
def __init__(self, api_key: str, base_url: str, model_name: str = chat_model, **data: Any):
super().__init__(**data)
self.api_key = api_key
self.base_url = base_url
self.model_name = model_name
self.client = OpenAI(api_key=self.api_key, base_url=self.base_url) # 使用传入的api_key和base_url初始化 client 实例
@property
def metadata(self) -> LLMMetadata:
"""Get LLM metadata."""
return LLMMetadata(
model_name=self.model_name,
)
@llm_completion_callback()
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
response = self.client.chat.completions.create(model=self.model_name, messages=[{"role": "user", "content": prompt}])
if hasattr(response, 'choices') and len(response.choices) > 0:
response_text = response.choices[0].message.content
return CompletionResponse(text=response_text)
else:
raise Exception(f"Unexpected response format: {response}")
@llm_completion_callback()
def stream_complete(
self, prompt: str, **kwargs: Any
) -> Generator[CompletionResponse, None, None]:
response = self.client.chat.completions.create(
model=self.model_name,
messages=[{"role": "user", "content": prompt}],
stream=True
)
try:
for chunk in response:
chunk_message = chunk.choices[0].delta
if not chunk_message.content:
continue
content = chunk_message.content
yield CompletionResponse(text=content, delta=content)
except Exception as e:
raise Exception(f"Unexpected response format: {e}")
llm = OurLLM(api_key=api_key, base_url=base_url, model_name=chat_model)
# print(llm)
# 测试模型是否能正常回答
response = llm.stream_complete("你是谁?")
for chunk in response:
print(chunk, end="", flush=True)
# 二、搜索工具
from llama_index.core.tools import FunctionTool
import requests
# 需要先把BOCHA_API_KEY填写到.env文件中去。
# BOCHA_API_KEY = os.getenv('BOCHA_API_KEY')
# 定义Bocha Web Search工具
def bocha_web_search_tool(query: str, count: int = 8) -> str:
"""
使用Bocha Web Search API进行联网搜索,返回搜索结果的字符串。
参数:
- query: 搜索关键词
- count: 返回的搜索结果数量
返回:
- 搜索结果的字符串形式
"""
url = 'https://api.bochaai.com/v1/web-search'
headers = {
'Authorization': f'Bearer {BOCHA_API_KEY}', # 请替换为你的API密钥
'Content-Type': 'application/json'
}
data = {
"query": query,
"freshness": "noLimit", # 搜索的时间范围,例如 "oneDay", "oneWeek", "oneMonth", "oneYear", "noLimit"
"summary": True, # 是否返回长文本摘要总结
"count": count
}
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
# 返回给大模型的格式化的搜索结果文本
# 可以自己对博查的搜索结果进行自定义处理
return str(response.json())
else:
raise Exception(f"API请求失败,状态码: {response.status_code}, 错误信息: {response.text}")
search_tool = FunctionTool.from_defaults(fn=bocha_web_search_tool)
from llama_index.core.agent import ReActAgent
agent = ReActAgent.from_tools([search_tool], llm=llm, verbose=True, max_iterations=10)
# 测试用例
query = "阿里巴巴2024年的ESG报告主要讲了哪些内容?"
response = agent.chat(f"请帮我搜索以下内容:{query}")
print(response)
Reference
[1] https://github.com/datawhalechina/wow-agent
[2] https://www.datawhale.cn/learn/summary/86
[3] https://open.bochaai.com/
[4] https://github.com/run-llama/llama_index/issues/14843
[5] 官方文档:https://docs.cloud.llamaindex.ai/