当前位置: 首页 > article >正文

9 点结构模块(point.rs)

一、point.rs源码

use super::UnknownUnit;
use crate::approxeq::ApproxEq;
use crate::approxord::{max, min};
use crate::length::Length;
use crate::num::*;
use crate::scale::Scale;
use crate::size::{Size2D, Size3D};
use crate::vector::{vec2, vec3, Vector2D, Vector3D};
use core::cmp::{Eq, PartialEq};
use core::fmt;
use core::hash::Hash;
use core::marker::PhantomData;
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
#[cfg(feature = "mint")]
use mint;
use num_traits::real::Real;
use num_traits::{Euclid, Float, NumCast};
#[cfg(feature = "serde")]
use serde;

#[cfg(feature = "bytemuck")]
use bytemuck::{Pod, Zeroable};

/// A 2d Point tagged with a unit.
#[repr(C)]
pub struct Point2D<T, U> {
    pub x: T,
    pub y: T,
    #[doc(hidden)]
    pub _unit: PhantomData<U>,
}

impl<T: Copy, U> Copy for Point2D<T, U> {}

impl<T: Clone, U> Clone for Point2D<T, U> {
    fn clone(&self) -> Self {
        Point2D {
            x: self.x.clone(),
            y: self.y.clone(),
            _unit: PhantomData,
        }
    }
}

//反序列化
#[cfg(feature = "serde")]
impl<'de, T, U> serde::Deserialize<'de> for Point2D<T, U>
where
    T: serde::Deserialize<'de>,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let (x, y) = serde::Deserialize::deserialize(deserializer)?;
        Ok(Point2D {
            x,
            y,
            _unit: PhantomData,
        })
    }
}

//序列化
#[cfg(feature = "serde")]
impl<T, U> serde::Serialize for Point2D<T, U>
where
    T: serde::Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        (&self.x, &self.y).serialize(serializer)
    }
}
//模糊测试的库特性,提供随机数,提高测试范围
#[cfg(feature = "arbitrary")]
impl<'a, T, U> arbitrary::Arbitrary<'a> for Point2D<T, U>
where
    T: arbitrary::Arbitrary<'a>,
{
    fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
        let (x, y) = arbitrary::Arbitrary::arbitrary(u)?;
        Ok(Point2D {
            x,
            y,
            _unit: PhantomData,
        })
    }
}

#[cfg(feature = "bytemuck")]
unsafe impl<T: Zeroable, U> Zeroable for Point2D<T, U> {}

#[cfg(feature = "bytemuck")]
unsafe impl<T: Pod, U: 'static> Pod for Point2D<T, U> {}

impl<T, U> Eq for Point2D<T, U> where T: Eq {}

impl<T, U> PartialEq for Point2D<T, U>
where
    T: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        self.x == other.x && self.y == other.y
    }
}

impl<T, U> Hash for Point2D<T, U>
where
    T: Hash,
{
    fn hash<H: core::hash::Hasher>(&self, h: &mut H) {
        self.x.hash(h);
        self.y.hash(h);
    }
}

mint_vec!(Point2D[x, y] = Point2);

impl<T: fmt::Debug, U> fmt::Debug for Point2D<T, U> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("").field(&self.x).field(&self.y).finish()
    }
}

impl<T: Default, U> Default for Point2D<T, U> {
    fn default() -> Self {
        Point2D::new(Default::default(), Default::default())
    }
}

impl<T, U> Point2D<T, U> {
    /// Constructor, setting all components to zero.
    #[inline]
    pub fn origin() -> Self
    where
        T: Zero,
    {
        point2(Zero::zero(), Zero::zero())
    }

    /// The same as [`Point2D::origin`].
    #[inline]
    pub fn zero() -> Self
    where
        T: Zero,
    {
        Self::origin()
    }

    /// Constructor taking scalar values directly.
    #[inline]
    pub const fn new(x: T, y: T) -> Self {
        Point2D {
            x,
            y,
            _unit: PhantomData,
        }
    }

    /// Constructor taking properly Lengths instead of scalar values.
    #[inline]
    pub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Self {
        point2(x.0, y.0)
    }

    /// Constructor setting all components to the same value.
    #[inline]
    pub fn splat(v: T) -> Self
    where
        T: Clone,
    {
        Point2D {
            x: v.clone(),
            y: v,
            _unit: PhantomData,
        }
    }

    /// Tag a unitless value with units.
    #[inline]
    pub fn from_untyped(p: Point2D<T, UnknownUnit>) -> Self {
        point2(p.x, p.y)
    }

    /// Apply the function `f` to each component of this point.
    ///
    /// # Example
    ///
    /// This may be used to perform unusual arithmetic which is not already offered as methods.
    ///
    /// ```
    /// use euclid::default::Point2D;
    ///
    /// let p = Point2D::<u32>::new(5, 15);
    /// assert_eq!(p.map(|coord| coord.saturating_sub(10)), Point2D::new(0, 5));
    /// ```
    #[inline]
    pub fn map<V, F: FnMut(T) -> V>(self, mut f: F) -> Point2D<V, U> {
        point2(f(self.x), f(self.y))
    }

    /// Apply the function `f` to each pair of components of this point and `rhs`.
    ///
    /// # Example
    ///
    /// This may be used to perform unusual arithmetic which is not already offered as methods.
    ///
    /// ```
    /// use euclid::{default::{Point2D, Vector2D}, point2};
    ///
    /// let a: Point2D<u32> = point2(50, 200);
    /// let b: Point2D<u32> = point2(100, 100);
    /// assert_eq!(a.zip(b, u32::saturating_sub), Vector2D::new(0, 100));
    /// ```
    #[inline]
    pub fn zip<V, F: FnMut(T, T) -> V>(self, rhs: Self, mut f: F) -> Vector2D<V, U> {
        vec2(f(self.x, rhs.x), f(self.y, rhs.y))
    }
}

impl<T: Copy, U> Point2D<T, U> {
    /// Create a 3d point from this one, using the specified z value.
    #[inline]
    pub fn extend(self, z: T) -> Point3D<T, U> {
        point3(self.x, self.y, z)
    }

    /// Cast this point into a vector.
    ///
    /// Equivalent to subtracting the origin from this point.
    #[inline]
    pub fn to_vector(self) -> Vector2D<T, U> {
        Vector2D {
            x: self.x,
            y: self.y,
            _unit: PhantomData,
        }
    }

    /// Swap x and y.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use euclid::{Point2D, point2};
    /// enum Mm {}
    ///
    /// let point: Point2D<_, Mm> = point2(1, -8);
    ///
    /// assert_eq!(point.yx(), point2(-8, 1));
    /// ```
    #[inline]
    pub fn yx(self) -> Self {
        point2(self.y, self.x)
    }

    /// Drop the units, preserving only the numeric value.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use euclid::{Point2D, point2};
    /// enum Mm {}
    ///
    /// let point: Point2D<_, Mm> = point2(1, -8);
    ///
    /// assert_eq!(point.x, point.to_untyped().x);
    /// assert_eq!(point.y, point.to_untyped().y);
    /// ```
    #[inline]
    pub fn to_untyped(self) -> Point2D<T, UnknownUnit> {
        point2(self.x, self.y)
    }

    /// Cast the unit, preserving the numeric value.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use euclid::{Point2D, point2};
    /// enum Mm {}
    /// enum Cm {}
    ///
    /// let point: Point2D<_, Mm> = point2(1, -8);
    ///
    /// assert_eq!(point.x, point.cast_unit::<Cm>().x);
    /// assert_eq!(point.y, point.cast_unit::<Cm>().y);
    /// ```
    #[inline]
    pub fn cast_unit<V>(self) -> Point2D<T, V> {
        point2(self.x, self.y)
    }

    /// Cast into an array with x and y.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use euclid::{Point2D, point2};
    /// enum Mm {}
    ///
    /// let point: Point2D<_, Mm> = point2(1, -8);
    ///
    /// assert_eq!(point.to_array(), [1, -8]);
    /// ```
    #[inline]
    pub fn to_array(self) -> [T; 2] {
        [self.x, self.y]
    }

    /// Cast into a tuple with x and y.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use euclid::{Point2D, point2};
    /// enum Mm {}
    ///
    /// let point: Point2D<_, Mm> = point2(1, -8);
    ///
    /// assert_eq!(point.to_tuple(), (1, -8));
    /// ```
    #[inline]
    pub fn to_tuple(self) -> (T, T) {
        (self.x, self.y)
    }

    /// Convert into a 3d point with z-coordinate equals to zero.
    #[inline]
    pub fn to_3d(self) -> Point3D<T, U>
    where
        T: Zero,
    {
        point3(self.x, self.y, Zero::zero())
    }

    /// Rounds each component to the nearest integer value.
    ///
    /// This behavior is preserved for negative values (unlike the basic cast).
    ///
    /// ```rust
    /// # use euclid::point2;
    /// enum Mm {}
    ///
    /// assert_eq!(point2::<_, Mm>(-0.1, -0.8).round(), point2::<_, Mm>(0.0, -1.0))
    /// ```
    #[inline]
    #[must_use]
    pub fn round(self) -> Self
    where
        T: Round,
    {
        point2(self.x.round(), self.y.round())
    }

    /// Rounds each component to the smallest integer equal or greater than the original value.
    ///
    /// This behavior is preserved for negative values (unlike the basic cast).
    ///
    /// ```rust
    /// # use euclid::point2;
    /// enum Mm {}
    ///
    /// assert_eq!(point2::<_, Mm>(-0.1, -0.8).ceil(), point2::<_, Mm>(0.0, 0.0))
    /// ```
    #[inline]
    #[must_use]
    pub fn ceil(self) -> Self
    where
        T: Ceil,
    {
        point2(self.x.ceil(), self.y.ceil())
    }

    /// Rounds each component to the biggest integer equal or lower than the original value.
    ///
    /// This behavior is preserved for negative values (unlike the basic cast).
    ///
    /// ```rust
    /// # use euclid::point2;
    /// enum Mm {}
    ///
    /// assert_eq!(point2::<_, Mm>(-0.1, -0.8).floor(), point2::<_, Mm>(-1.0, -1.0))
    /// ```
    #[inline]
    #[must_use]
    pub fn floor(self) -> Self
    where
        T: Floor,
    {
        point2(self.x.floor(), self.y.floor())
    }

    /// Linearly interpolate between this point and another point.
    ///
    /// # Example
    ///
    /// ```rust
    /// use euclid::point2;
    /// use euclid::default::Point2D;
    ///
    /// let from: Point2D<_> = point2(0.0, 10.0);
    /// let to:  Point2D<_> = point2(8.0, -4.0);
    ///
    /// assert_eq!(from.lerp(to, -1.0), point2(-8.0,  24.0));
    /// assert_eq!(from.lerp(to,  0.0), point2( 0.0,  10.0));
    /// assert_eq!(from.lerp(to,  0.5), point2( 4.0,   3.0));
    /// assert_eq!(from.lerp(to,  1.0), point2( 8.0,  -4.0));
    /// assert_eq!(from.lerp(to,  2.0), point2(16.0, -18.0));
    /// ```
    #[inline]
    pub fn lerp(self, other: Self, t: T) -> Self
    where
        T: One + Sub<Output = T> + Mul<Output = T> + Add<Output = T>,
    {
        let one_t = T::one() - t;
        point2(one_t * self.x + t * other.x, one_t * self.y + t * other.y)
    }
}

impl<T: PartialOrd, U> Point2D<T, U> {
    #[inline]
    pub fn min(self, other: Self) -> Self {
        point2(min(self.x, other.x), min(self.y, other.y))
    }

    #[inline]
    pub fn max(self, other: Self) -> Self {
        point2(max(self.x, other.x), max(self.y, other.y))
    }

    /// Returns the point each component of which clamped by corresponding
    /// components of `start` and `end`.
    ///
    /// Shortcut for `self.max(start).min(end)`.
    #[inline]
    pub fn clamp(self, start: Self, end: Self) -> Self
    where
        T: Copy,
    {
        self.max(start).min(end)
    }
}

impl<T: NumCast + Copy, U> Point2D<T, U> {
    /// Cast from one numeric representation to another, preserving the units.
    ///
    /// When casting from floating point to integer coordinates, the decimals are truncated
    /// as one would expect from a simple cast, but this behavior does not always make sense
    /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
    #[inline]
    pub fn cast<NewT: NumCast>(self) -> Point2D<NewT, U> {
        self.try_cast().unwrap()
    }

    /// Fallible cast from one numeric representation to another, preserving the units.
    ///
    /// When casting from floating point to integer coordinates, the decimals are truncated
    /// as one would expect from a simple cast, but this behavior does not always make sense
    /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
    pub fn try_cast<NewT: NumCast>(self) -> Option<Point2D<NewT, U>> {
        match (NumCast::from(self.x), NumCast::from(self.y)) {
            (Some(x), Some(y)) => Some(point2(x, y)),
            _ => None,
        }
    }

    // Convenience functions for common casts

    /// Cast into an `f32` point.
    #[inline]
    pub fn to_f32(self) -> Point2D<f32, U> {
        self.cast()
    }

    /// Cast into an `f64` point.
    #[inline]
    pub fn to_f64(self) -> Point2D<f64, U> {
        self.cast()
    }

    /// Cast into an `usize` point, truncating decimals if any.
    ///
    /// When casting from floating point points, it is worth considering whether
    /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
    /// the desired conversion behavior.
    #[inline]
    pub fn to_usize(self) -> Point2D<usize, U> {
        self.cast()
    }

    /// Cast into an `u32` point, truncating decimals if any.
    ///
    /// When casting from floating point points, it is worth considering whether
    /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
    /// the desired conversion behavior.
    #[inline]
    pub fn to_u32(self) -> Point2D<u32, U> {
        self.cast()
    }

    /// Cast into an `i32` point, truncating decimals if any.
    ///
    /// When casting from floating point points, it is worth considering whether
    /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
    /// the desired conversion behavior.
    #[inline]
    pub fn to_i32(self) -> Point2D<i32, U> {
        self.cast()
    }

    /// Cast into an `i64` point, truncating decimals if any.
    ///
    /// When casting from floating point points, it is worth considering whether
    /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
    /// the desired conversion behavior.
    #[inline]
    pub fn to_i64(self) -> Point2D<i64, U> {
        self.cast()
    }
}

impl<T: Float, U> Point2D<T, U> {
    /// Returns `true` if all members are finite.
    #[inline]
    pub fn is_finite(self) -> bool {
        self.x.is_finite() && self.y.is_finite()
    }
}

impl<T: Copy + Add<T, Output = T>, U> Point2D<T, U> {
    #[inline]
    pub fn add_size(self, other: &Size2D<T, U>) -> Self {
        point2(self.x + other.width, self.y + other.height)
    }
}

impl<T: Real + Sub<T, Output = T>, U> Point2D<T, U> {
    #[inline]
    pub fn distance_to(self, other: Self) -> T {
        (self - other).length()
    }
}

impl<T: Neg, U> Neg for Point2D<T, U> {
    type Output = Point2D<T::Output, U>;

    #[inline]
    fn neg(self) -> Self::Output {
        point2(-self.x, -self.y)
    }
}

impl<T: Add, U> Add<Size2D<T, U>> for Point2D<T, U> {
    type Output = Point2D<T::Output, U>;

    #[inline]
    fn add(self, other: Size2D<T, U>) -> Self::Output {
        point2(self.x + other.width, self.y + other.height)
    }
}

impl<T: AddAssign, U> AddAssign<Size2D<T, U>> for Point2D<T, U> {
    #[inline]
    fn add_assign(&mut self, other: Size2D<T, U>) {
        self.x += other.width;
        self.y += other.height;
    }
}

impl<T: Add, U> Add<Vector2D<T, U>> for Point2D<T, U> {
    type Output = Point2D<T::Output, U>;

    #[inline]
    fn add(self, other: Vector2D<T, U>) -> Self::Output {
        point2(self.x + other.x, self.y + other.y)
    }
}

impl<T: Copy + Add<T, Output = T>, U> AddAssign<Vector2D<T, U>> for Point2D<T, U> {
    #[inline]
    fn add_assign(&mut self, other: Vector2D<T, U>) {
        *self = *self + other;
    }
}

impl<T: Sub, U> Sub for Point2D<T, U> {
    type Output = Vector2D<T::Output, U>;

    #[inline]
    fn sub(self, other: Self) -> Self::Output {
        vec2(self.x - other.x, self.y - other.y)
    }
}

impl<T: Sub, U> Sub<Size2D<T, U>> for Point2D<T, U> {
    type Output = Point2D<T::Output, U>;

    #[inline]
    fn sub(self, other: Size2D<T, U>) -> Self::Output {
        point2(self.x - other.width, self.y - other.height)
    }
}

impl<T: SubAssign, U> SubAssign<Size2D<T, U>> for Point2D<T, U> {
    #[inline]
    fn sub_assign(&mut self, other: Size2D<T, U>) {
        self.x -= other.width;
        self.y -= other.height;
    }
}

impl<T: Sub, U> Sub<Vector2D<T, U>> for Point2D<T, U> {
    type Output = Point2D<T::Output, U>;

    #[inline]
    fn sub(self, other: Vector2D<T, U>) -> Self::Output {
        point2(self.x - other.x, self.y - other.y)
    }
}

impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector2D<T, U>> for Point2D<T, U> {
    #[inline]
    fn sub_assign(&mut self, other: Vector2D<T, U>) {
        *self = *self - other;
    }
}

impl<T: Copy + Mul, U> Mul<T> for Point2D<T, U> {
    type Output = Point2D<T::Output, U>;

    #[inline]
    fn mul(self, scale: T) -> Self::Output {
        point2(self.x * scale, self.y * scale)
    }
}

impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Point2D<T, U> {
    #[inline]
    fn mul_assign(&mut self, scale: T) {
        *self = *self * scale;
    }
}

impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Point2D<T, U1> {
    type Output = Point2D<T::Output, U2>;

    #[inline]
    fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {
        point2(self.x * scale.0, self.y * scale.0)
    }
}

impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Point2D<T, U> {
    #[inline]
    fn mul_assign(&mut self, scale: Scale<T, U, U>) {
        self.x *= scale.0;
        self.y *= scale.0;
    }
}

impl<T: Copy + Div, U> Div<T> for Point2D<T, U> {
    type Output = Point2D<T::Output, U>;

    #[inline]
    fn div(self, scale: T) -> Self::Output {
        point2(self.x / scale, self.y / scale)
    }
}

impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Point2D<T, U> {
    #[inline]
    fn div_assign(&mut self, scale: T) {
        *self = *self / scale;
    }
}

impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Point2D<T, U2> {
    type Output = Point2D<T::Output, U1>;

    #[inline]
    fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {
        point2(self.x / scale.0, self.y / scale.0)
    }
}

impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Point2D<T, U> {
    #[inline]
    fn div_assign(&mut self, scale: Scale<T, U, U>) {
        self.x /= scale.0;
        self.y /= scale.0;
    }
}

impl<T: Zero, U> Zero for Point2D<T, U> {
    #[inline]
    fn zero() -> Self {
        Self::origin()
    }
}

impl<T: Round, U> Round for Point2D<T, U> {
    /// See [`Point2D::round`].
    #[inline]
    fn round(self) -> Self {
        self.round()
    }
}

impl<T: Ceil, U> Ceil for Point2D<T, U> {
    /// See [`Point2D::ceil`].
    #[inline]
    fn ceil(self) -> Self {
        self.ceil()
    }
}

impl<T: Floor, U> Floor for Point2D<T, U> {
    /// See [`Point2D::floor`].
    #[inline]
    fn floor(self) -> Self {
        self.floor()
    }
}

impl<T: ApproxEq<T>, U> ApproxEq<Point2D<T, U>> for Point2D<T, U> {
    #[inline]
    fn approx_epsilon() -> Self {
        point2(T::approx_epsilon(), T::approx_epsilon())
    }

    #[inline]
    fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool {
        self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y)
    }
}

impl<T: Euclid, U> Point2D<T, U> {
    /// Calculates the least nonnegative remainder of `self (mod other)`.
    ///
    /// # Example
    ///
    /// ```rust
    /// use euclid::point2;
    /// use euclid::default::{Point2D, Size2D};
    ///
    /// let p = Point2D::new(7.0, -7.0);
    /// let s = Size2D::new(4.0, -4.0);
    ///
    /// assert_eq!(p.rem_euclid(&s), point2(3.0, 1.0));
    /// assert_eq!((-p).rem_euclid(&s), point2(1.0, 3.0));
    /// assert_eq!(p.rem_euclid(&-s), point2(3.0, 1.0));
    /// ```
    #[inline]
    pub fn rem_euclid(&self, other: &Size2D<T, U>) -> Self {
        point2(
            self.x.rem_euclid(&other.width),
            self.y.rem_euclid(&other.height),
        )
    }

    /// Calculates Euclidean division, the matching method for `rem_euclid`.
    ///
    /// # Example
    ///
    /// ```rust
    /// use euclid::point2;
    /// use euclid::default::{Point2D, Size2D};
    ///
    /// let p = Point2D::new(7.0, -7.0);
    /// let s = Size2D::new(4.0, -4.0);
    ///
    /// assert_eq!(p.div_euclid(&s), point2(1.0, 2.0));
    /// assert_eq!((-p).div_euclid(&s), point2(-2.0, -1.0));
    /// assert_eq!(p.div_euclid(&-s), point2(-1.0, -2.0));
    /// ```
    #[inline]
    pub fn div_euclid(&self, other: &Size2D<T, U>) -> Self {
        point2(
            self.x.div_euclid(&other.width),
            self.y.div_euclid(&other.height),
        )
    }
}

impl<T, U> From<Point2D<T, U>> for [T; 2] {
    fn from(p: Point2D<T, U>) -> Self {
        [p.x, p.y]
    }
}

impl<T, U> From<[T; 2]> for Point2D<T, U> {
    fn from([x, y]: [T; 2]) -> Self {
        point2(x, y)
    }
}

impl<T, U> From<Point2D<T, U>> for (T, T) {
    fn from(p: Point2D<T, U>) -> Self {
        (p.x, p.y)
    }
}

impl<T, U> From<(T, T)> for Point2D<T, U> {
    fn from(tuple: (T, T)) -> Self {
        point2(tuple.0, tuple.1)
    }
}

/// A 3d Point tagged with a unit.
#[repr(C)]
pub struct Point3D<T, U> {
    pub x: T,
    pub y: T,
    pub z: T,
    #[doc(hidden)]
    pub _unit: PhantomData<U>,
}

mint_vec!(Point3D[x, y, z] = Point3);

impl<T: Copy, U> Copy for Point3D<T, U> {}

impl<T: Clone, U> Clone for Point3D<T, U> {
    fn clone(&self) -> Self {
        Point3D {
            x: self.x.clone(),
            y: self.y.clone(),
            z: self.z.clone(),
            _unit: PhantomData,
        }
    }
}

#[cfg(feature = "serde")]
impl<'de, T, U> serde::Deserialize<'de> for Point3D<T, U>
where
    T: serde::Deserialize<'de>,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let (x, y, z) = serde::Deserialize::deserialize(deserializer)?;
        Ok(Point3D {
            x,
            y,
            z,
            _unit: PhantomData,
        })
    }
}

#[cfg(feature = "serde")]
impl<T, U> serde::Serialize for Point3D<T, U>
where
    T: serde::Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        (&self.x, &self.y, &self.z).serialize(serializer)
    }
}

#[cfg(feature = "arbitrary")]
impl<'a, T, U> arbitrary::Arbitrary<'a> for Point3D<T, U>
where
    T: arbitrary::Arbitrary<'a>,
{
    fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
        let (x, y, z) = arbitrary::Arbitrary::arbitrary(u)?;
        Ok(Point3D {
            x,
            y,
            z,
            _unit: PhantomData,
        })
    }
}

#[cfg(feature = "bytemuck")]
unsafe impl<T: Zeroable, U> Zeroable for Point3D<T, U> {}

#[cfg(feature = "bytemuck")]
unsafe impl<T: Pod, U: 'static> Pod for Point3D<T, U> {}

impl<T, U> Eq for Point3D<T, U> where T: Eq {}

impl<T, U> PartialEq for Point3D<T, U>
where
    T: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        self.x == other.x && self.y == other.y && self.z == other.z
    }
}

impl<T, U> Hash for Point3D<T, U>
where
    T: Hash,
{
    fn hash<H: core::hash::Hasher>(&self, h: &mut H) {
        self.x.hash(h);
        self.y.hash(h);
        self.z.hash(h);
    }
}

impl<T: fmt::Debug, U> fmt::Debug for Point3D<T, U> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("")
            .field(&self.x)
            .field(&self.y)
            .field(&self.z)
            .finish()
    }
}

impl<T: Default, U> Default for Point3D<T, U> {
    fn default() -> Self {
        Point3D::new(Default::default(), Default::default(), Default::default())
    }
}

impl<T, U> Point3D<T, U> {
    /// Constructor, setting all components to zero.
    #[inline]
    pub fn origin() -> Self
    where
        T: Zero,
    {
        point3(Zero::zero(), Zero::zero(), Zero::zero())
    }

    /// The same as [`Point3D::origin`].
    #[inline]
    pub fn zero() -> Self
    where
        T: Zero,
    {
        Self::origin()
    }

    /// Constructor taking scalar values directly.
    #[inline]
    pub const fn new(x: T, y: T, z: T) -> Self {
        Point3D {
            x,
            y,
            z,
            _unit: PhantomData,
        }
    }

    /// Constructor taking properly Lengths instead of scalar values.
    #[inline]
    pub fn from_lengths(x: Length<T, U>, y: Length<T, U>, z: Length<T, U>) -> Self {
        point3(x.0, y.0, z.0)
    }

    /// Constructor setting all components to the same value.
    #[inline]
    pub fn splat(v: T) -> Self
    where
        T: Clone,
    {
        Point3D {
            x: v.clone(),
            y: v.clone(),
            z: v,
            _unit: PhantomData,
        }
    }

    /// Tag a unitless value with units.
    #[inline]
    pub fn from_untyped(p: Point3D<T, UnknownUnit>) -> Self {
        point3(p.x, p.y, p.z)
    }

    /// Apply the function `f` to each component of this point.
    ///
    /// # Example
    ///
    /// This may be used to perform unusual arithmetic which is not already offered as methods.
    ///
    /// ```
    /// use euclid::default::Point3D;
    ///
    /// let p = Point3D::<u32>::new(5, 11, 15);
    /// assert_eq!(p.map(|coord| coord.saturating_sub(10)), Point3D::new(0, 1, 5));
    /// ```
    #[inline]
    pub fn map<V, F: FnMut(T) -> V>(self, mut f: F) -> Point3D<V, U> {
        point3(f(self.x), f(self.y), f(self.z))
    }

    /// Apply the function `f` to each pair of components of this point and `rhs`.
    ///
    /// # Example
    ///
    /// This may be used to perform unusual arithmetic which is not already offered as methods.
    ///
    /// ```
    /// use euclid::{default::{Point3D, Vector3D}, point2};
    ///
    /// let a: Point3D<u32> = Point3D::new(50, 200, 400);
    /// let b: Point3D<u32> = Point3D::new(100, 100, 150);
    /// assert_eq!(a.zip(b, u32::saturating_sub), Vector3D::new(0, 100, 250));
    /// ```
    #[inline]
    pub fn zip<V, F: FnMut(T, T) -> V>(self, rhs: Self, mut f: F) -> Vector3D<V, U> {
        vec3(f(self.x, rhs.x), f(self.y, rhs.y), f(self.z, rhs.z))
    }
}

impl<T: Copy, U> Point3D<T, U> {
    /// Cast this point into a vector.
    ///
    /// Equivalent to subtracting the origin to this point.
    #[inline]
    pub fn to_vector(self) -> Vector3D<T, U> {
        Vector3D {
            x: self.x,
            y: self.y,
            z: self.z,
            _unit: PhantomData,
        }
    }

    /// Returns a 2d point using this point's x and y coordinates
    #[inline]
    pub fn xy(self) -> Point2D<T, U> {
        point2(self.x, self.y)
    }

    /// Returns a 2d point using this point's x and z coordinates
    #[inline]
    pub fn xz(self) -> Point2D<T, U> {
        point2(self.x, self.z)
    }

    /// Returns a 2d point using this point's x and z coordinates
    #[inline]
    pub fn yz(self) -> Point2D<T, U> {
        point2(self.y, self.z)
    }

    /// Cast into an array with x, y and z.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use euclid::{Point3D, point3};
    /// enum Mm {}
    ///
    /// let point: Point3D<_, Mm> = point3(1, -8, 0);
    ///
    /// assert_eq!(point.to_array(), [1, -8, 0]);
    /// ```
    #[inline]
    pub fn to_array(self) -> [T; 3] {
        [self.x, self.y, self.z]
    }

    #[inline]
    pub fn to_array_4d(self) -> [T; 4]
    where
        T: One,
    {
        [self.x, self.y, self.z, One::one()]
    }

    /// Cast into a tuple with x, y and z.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use euclid::{Point3D, point3};
    /// enum Mm {}
    ///
    /// let point: Point3D<_, Mm> = point3(1, -8, 0);
    ///
    /// assert_eq!(point.to_tuple(), (1, -8, 0));
    /// ```
    #[inline]
    pub fn to_tuple(self) -> (T, T, T) {
        (self.x, self.y, self.z)
    }

    #[inline]
    pub fn to_tuple_4d(self) -> (T, T, T, T)
    where
        T: One,
    {
        (self.x, self.y, self.z, One::one())
    }

    /// Drop the units, preserving only the numeric value.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use euclid::{Point3D, point3};
    /// enum Mm {}
    ///
    /// let point: Point3D<_, Mm> = point3(1, -8, 0);
    ///
    /// assert_eq!(point.x, point.to_untyped().x);
    /// assert_eq!(point.y, point.to_untyped().y);
    /// assert_eq!(point.z, point.to_untyped().z);
    /// ```
    #[inline]
    pub fn to_untyped(self) -> Point3D<T, UnknownUnit> {
        point3(self.x, self.y, self.z)
    }

    /// Cast the unit, preserving the numeric value.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use euclid::{Point3D, point3};
    /// enum Mm {}
    /// enum Cm {}
    ///
    /// let point: Point3D<_, Mm> = point3(1, -8, 0);
    ///
    /// assert_eq!(point.x, point.cast_unit::<Cm>().x);
    /// assert_eq!(point.y, point.cast_unit::<Cm>().y);
    /// assert_eq!(point.z, point.cast_unit::<Cm>().z);
    /// ```
    #[inline]
    pub fn cast_unit<V>(self) -> Point3D<T, V> {
        point3(self.x, self.y, self.z)
    }

    /// Convert into a 2d point.
    #[inline]
    pub fn to_2d(self) -> Point2D<T, U> {
        self.xy()
    }

    /// Rounds each component to the nearest integer value.
    ///
    /// This behavior is preserved for negative values (unlike the basic cast).
    ///
    /// ```rust
    /// # use euclid::point3;
    /// enum Mm {}
    ///
    /// assert_eq!(point3::<_, Mm>(-0.1, -0.8, 0.4).round(), point3::<_, Mm>(0.0, -1.0, 0.0))
    /// ```
    #[inline]
    #[must_use]
    pub fn round(self) -> Self
    where
        T: Round,
    {
        point3(self.x.round(), self.y.round(), self.z.round())
    }

    /// Rounds each component to the smallest integer equal or greater than the original value.
    ///
    /// This behavior is preserved for negative values (unlike the basic cast).
    ///
    /// ```rust
    /// # use euclid::point3;
    /// enum Mm {}
    ///
    /// assert_eq!(point3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), point3::<_, Mm>(0.0, 0.0, 1.0))
    /// ```
    #[inline]
    #[must_use]
    pub fn ceil(self) -> Self
    where
        T: Ceil,
    {
        point3(self.x.ceil(), self.y.ceil(), self.z.ceil())
    }

    /// Rounds each component to the biggest integer equal or lower than the original value.
    ///
    /// This behavior is preserved for negative values (unlike the basic cast).
    ///
    /// ```rust
    /// # use euclid::point3;
    /// enum Mm {}
    ///
    /// assert_eq!(point3::<_, Mm>(-0.1, -0.8, 0.4).floor(), point3::<_, Mm>(-1.0, -1.0, 0.0))
    /// ```
    #[inline]
    #[must_use]
    pub fn floor(self) -> Self
    where
        T: Floor,
    {
        point3(self.x.floor(), self.y.floor(), self.z.floor())
    }

    /// Linearly interpolate between this point and another point.
    ///
    /// # Example
    ///
    /// ```rust
    /// use euclid::point3;
    /// use euclid::default::Point3D;
    ///
    /// let from: Point3D<_> = point3(0.0, 10.0, -1.0);
    /// let to:  Point3D<_> = point3(8.0, -4.0,  0.0);
    ///
    /// assert_eq!(from.lerp(to, -1.0), point3(-8.0,  24.0, -2.0));
    /// assert_eq!(from.lerp(to,  0.0), point3( 0.0,  10.0, -1.0));
    /// assert_eq!(from.lerp(to,  0.5), point3( 4.0,   3.0, -0.5));
    /// assert_eq!(from.lerp(to,  1.0), point3( 8.0,  -4.0,  0.0));
    /// assert_eq!(from.lerp(to,  2.0), point3(16.0, -18.0,  1.0));
    /// ```
    #[inline]
    pub fn lerp(self, other: Self, t: T) -> Self
    where
        T: One + Sub<Output = T> + Mul<Output = T> + Add<Output = T>,
    {
        let one_t = T::one() - t;
        point3(
            one_t * self.x + t * other.x,
            one_t * self.y + t * other.y,
            one_t * self.z + t * other.z,
        )
    }
}

impl<T: PartialOrd, U> Point3D<T, U> {
    #[inline]
    pub fn min(self, other: Self) -> Self {
        point3(
            min(self.x, other.x),
            min(self.y, other.y),
            min(self.z, other.z),
        )
    }

    #[inline]
    pub fn max(self, other: Self) -> Self {
        point3(
            max(self.x, other.x),
            max(self.y, other.y),
            max(self.z, other.z),
        )
    }

    /// Returns the point each component of which clamped by corresponding
    /// components of `start` and `end`.
    ///
    /// Shortcut for `self.max(start).min(end)`.
    #[inline]
    pub fn clamp(self, start: Self, end: Self) -> Self
    where
        T: Copy,
    {
        self.max(start).min(end)
    }
}

impl<T: NumCast + Copy, U> Point3D<T, U> {
    /// Cast from one numeric representation to another, preserving the units.
    ///
    /// When casting from floating point to integer coordinates, the decimals are truncated
    /// as one would expect from a simple cast, but this behavior does not always make sense
    /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
    #[inline]
    pub fn cast<NewT: NumCast>(self) -> Point3D<NewT, U> {
        self.try_cast().unwrap()
    }

    /// Fallible cast from one numeric representation to another, preserving the units.
    ///
    /// When casting from floating point to integer coordinates, the decimals are truncated
    /// as one would expect from a simple cast, but this behavior does not always make sense
    /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
    pub fn try_cast<NewT: NumCast>(self) -> Option<Point3D<NewT, U>> {
        match (
            NumCast::from(self.x),
            NumCast::from(self.y),
            NumCast::from(self.z),
        ) {
            (Some(x), Some(y), Some(z)) => Some(point3(x, y, z)),
            _ => None,
        }
    }

    // Convenience functions for common casts

    /// Cast into an `f32` point.
    #[inline]
    pub fn to_f32(self) -> Point3D<f32, U> {
        self.cast()
    }

    /// Cast into an `f64` point.
    #[inline]
    pub fn to_f64(self) -> Point3D<f64, U> {
        self.cast()
    }

    /// Cast into an `usize` point, truncating decimals if any.
    ///
    /// When casting from floating point points, it is worth considering whether
    /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
    /// the desired conversion behavior.
    #[inline]
    pub fn to_usize(self) -> Point3D<usize, U> {
        self.cast()
    }

    /// Cast into an `u32` point, truncating decimals if any.
    ///
    /// When casting from floating point points, it is worth considering whether
    /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
    /// the desired conversion behavior.
    #[inline]
    pub fn to_u32(self) -> Point3D<u32, U> {
        self.cast()
    }

    /// Cast into an `i32` point, truncating decimals if any.
    ///
    /// When casting from floating point points, it is worth considering whether
    /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
    /// the desired conversion behavior.
    #[inline]
    pub fn to_i32(self) -> Point3D<i32, U> {
        self.cast()
    }

    /// Cast into an `i64` point, truncating decimals if any.
    ///
    /// When casting from floating point points, it is worth considering whether
    /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
    /// the desired conversion behavior.
    #[inline]
    pub fn to_i64(self) -> Point3D<i64, U> {
        self.cast()
    }
}

impl<T: Float, U> Point3D<T, U> {
    /// Returns `true` if all members are finite.
    #[inline]
    pub fn is_finite(self) -> bool {
        self.x.is_finite() && self.y.is_finite() && self.z.is_finite()
    }
}

impl<T: Copy + Add<T, Output = T>, U> Point3D<T, U> {
    #[inline]
    pub fn add_size(self, other: Size3D<T, U>) -> Self {
        point3(
            self.x + other.width,
            self.y + other.height,
            self.z + other.depth,
        )
    }
}

impl<T: Real + Sub<T, Output = T>, U> Point3D<T, U> {
    #[inline]
    pub fn distance_to(self, other: Self) -> T {
        (self - other).length()
    }
}

impl<T: Neg, U> Neg for Point3D<T, U> {
    type Output = Point3D<T::Output, U>;

    #[inline]
    fn neg(self) -> Self::Output {
        point3(-self.x, -self.y, -self.z)
    }
}

impl<T: Add, U> Add<Size3D<T, U>> for Point3D<T, U> {
    type Output = Point3D<T::Output, U>;

    #[inline]
    fn add(self, other: Size3D<T, U>) -> Self::Output {
        point3(
            self.x + other.width,
            self.y + other.height,
            self.z + other.depth,
        )
    }
}

impl<T: AddAssign, U> AddAssign<Size3D<T, U>> for Point3D<T, U> {
    #[inline]
    fn add_assign(&mut self, other: Size3D<T, U>) {
        self.x += other.width;
        self.y += other.height;
        self.z += other.depth;
    }
}

impl<T: Add, U> Add<Vector3D<T, U>> for Point3D<T, U> {
    type Output = Point3D<T::Output, U>;

    #[inline]
    fn add(self, other: Vector3D<T, U>) -> Self::Output {
        point3(self.x + other.x, self.y + other.y, self.z + other.z)
    }
}

impl<T: Copy + Add<T, Output = T>, U> AddAssign<Vector3D<T, U>> for Point3D<T, U> {
    #[inline]
    fn add_assign(&mut self, other: Vector3D<T, U>) {
        *self = *self + other;
    }
}

impl<T: Sub, U> Sub for Point3D<T, U> {
    type Output = Vector3D<T::Output, U>;

    #[inline]
    fn sub(self, other: Self) -> Self::Output {
        vec3(self.x - other.x, self.y - other.y, self.z - other.z)
    }
}

impl<T: Sub, U> Sub<Size3D<T, U>> for Point3D<T, U> {
    type Output = Point3D<T::Output, U>;

    #[inline]
    fn sub(self, other: Size3D<T, U>) -> Self::Output {
        point3(
            self.x - other.width,
            self.y - other.height,
            self.z - other.depth,
        )
    }
}

impl<T: SubAssign, U> SubAssign<Size3D<T, U>> for Point3D<T, U> {
    #[inline]
    fn sub_assign(&mut self, other: Size3D<T, U>) {
        self.x -= other.width;
        self.y -= other.height;
        self.z -= other.depth;
    }
}

impl<T: Sub, U> Sub<Vector3D<T, U>> for Point3D<T, U> {
    type Output = Point3D<T::Output, U>;

    #[inline]
    fn sub(self, other: Vector3D<T, U>) -> Self::Output {
        point3(self.x - other.x, self.y - other.y, self.z - other.z)
    }
}

impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector3D<T, U>> for Point3D<T, U> {
    #[inline]
    fn sub_assign(&mut self, other: Vector3D<T, U>) {
        *self = *self - other;
    }
}

impl<T: Copy + Mul, U> Mul<T> for Point3D<T, U> {
    type Output = Point3D<T::Output, U>;

    #[inline]
    fn mul(self, scale: T) -> Self::Output {
        point3(self.x * scale, self.y * scale, self.z * scale)
    }
}

impl<T: Copy + MulAssign, U> MulAssign<T> for Point3D<T, U> {
    #[inline]
    fn mul_assign(&mut self, scale: T) {
        self.x *= scale;
        self.y *= scale;
        self.z *= scale;
    }
}

impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Point3D<T, U1> {
    type Output = Point3D<T::Output, U2>;

    #[inline]
    fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {
        point3(self.x * scale.0, self.y * scale.0, self.z * scale.0)
    }
}

impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Point3D<T, U> {
    #[inline]
    fn mul_assign(&mut self, scale: Scale<T, U, U>) {
        *self *= scale.0;
    }
}

impl<T: Copy + Div, U> Div<T> for Point3D<T, U> {
    type Output = Point3D<T::Output, U>;

    #[inline]
    fn div(self, scale: T) -> Self::Output {
        point3(self.x / scale, self.y / scale, self.z / scale)
    }
}

impl<T: Copy + DivAssign, U> DivAssign<T> for Point3D<T, U> {
    #[inline]
    fn div_assign(&mut self, scale: T) {
        self.x /= scale;
        self.y /= scale;
        self.z /= scale;
    }
}

impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Point3D<T, U2> {
    type Output = Point3D<T::Output, U1>;

    #[inline]
    fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {
        point3(self.x / scale.0, self.y / scale.0, self.z / scale.0)
    }
}

impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Point3D<T, U> {
    #[inline]
    fn div_assign(&mut self, scale: Scale<T, U, U>) {
        *self /= scale.0;
    }
}

impl<T: Zero, U> Zero for Point3D<T, U> {
    #[inline]
    fn zero() -> Self {
        Self::origin()
    }
}

impl<T: Round, U> Round for Point3D<T, U> {
    /// See [`Point3D::round`].
    #[inline]
    fn round(self) -> Self {
        self.round()
    }
}

impl<T: Ceil, U> Ceil for Point3D<T, U> {
    /// See [`Point3D::ceil`].
    #[inline]
    fn ceil(self) -> Self {
        self.ceil()
    }
}

impl<T: Floor, U> Floor for Point3D<T, U> {
    /// See [`Point3D::floor`].
    #[inline]
    fn floor(self) -> Self {
        self.floor()
    }
}

impl<T: ApproxEq<T>, U> ApproxEq<Point3D<T, U>> for Point3D<T, U> {
    #[inline]
    fn approx_epsilon() -> Self {
        point3(
            T::approx_epsilon(),
            T::approx_epsilon(),
            T::approx_epsilon(),
        )
    }

    #[inline]
    fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool {
        self.x.approx_eq_eps(&other.x, &eps.x)
            && self.y.approx_eq_eps(&other.y, &eps.y)
            && self.z.approx_eq_eps(&other.z, &eps.z)
    }
}

impl<T: Euclid, U> Point3D<T, U> {
    /// Calculates the least nonnegative remainder of `self (mod other)`.
    ///
    /// # Example
    ///
    /// ```rust
    /// use euclid::point3;
    /// use euclid::default::{Point3D, Size3D};
    ///
    /// let p = Point3D::new(7.0, -7.0, 0.0);
    /// let s = Size3D::new(4.0, -4.0, 12.0);
    ///
    /// assert_eq!(p.rem_euclid(&s), point3(3.0, 1.0, 0.0));
    /// assert_eq!((-p).rem_euclid(&s), point3(1.0, 3.0, 0.0));
    /// assert_eq!(p.rem_euclid(&-s), point3(3.0, 1.0, 0.0));
    /// ```
    #[inline]
    pub fn rem_euclid(&self, other: &Size3D<T, U>) -> Self {
        point3(
            self.x.rem_euclid(&other.width),
            self.y.rem_euclid(&other.height),
            self.z.rem_euclid(&other.depth),
        )
    }

    /// Calculates Euclidean division, the matching method for `rem_euclid`.
    ///
    /// # Example
    ///
    /// ```rust
    /// use euclid::point3;
    /// use euclid::default::{Point3D, Size3D};
    ///
    /// let p = Point3D::new(7.0, -7.0, 0.0);
    /// let s = Size3D::new(4.0, -4.0, 12.0);
    ///
    /// assert_eq!(p.div_euclid(&s), point3(1.0, 2.0, 0.0));
    /// assert_eq!((-p).div_euclid(&s), point3(-2.0, -1.0, 0.0));
    /// assert_eq!(p.div_euclid(&-s), point3(-1.0, -2.0, 0.0));
    /// ```
    #[inline]
    pub fn div_euclid(&self, other: &Size3D<T, U>) -> Self {
        point3(
            self.x.div_euclid(&other.width),
            self.y.div_euclid(&other.height),
            self.z.div_euclid(&other.depth),
        )
    }
}

impl<T, U> From<Point3D<T, U>> for [T; 3] {
    fn from(p: Point3D<T, U>) -> Self {
        [p.x, p.y, p.z]
    }
}

impl<T, U> From<[T; 3]> for Point3D<T, U> {
    fn from([x, y, z]: [T; 3]) -> Self {
        point3(x, y, z)
    }
}

impl<T, U> From<Point3D<T, U>> for (T, T, T) {
    fn from(p: Point3D<T, U>) -> Self {
        (p.x, p.y, p.z)
    }
}

impl<T, U> From<(T, T, T)> for Point3D<T, U> {
    fn from(tuple: (T, T, T)) -> Self {
        point3(tuple.0, tuple.1, tuple.2)
    }
}

/// Shorthand for `Point2D::new(x, y)`.
#[inline]
pub const fn point2<T, U>(x: T, y: T) -> Point2D<T, U> {
    Point2D {
        x,
        y,
        _unit: PhantomData,
    }
}

/// Shorthand for `Point3D::new(x, y)`.
#[inline]
pub const fn point3<T, U>(x: T, y: T, z: T) -> Point3D<T, U> {
    Point3D {
        x,
        y,
        z,
        _unit: PhantomData,
    }
}

#[cfg(test)]
mod point2d {
    use crate::default::Point2D;
    use crate::point2;

    #[cfg(feature = "mint")]
    use mint;

    #[test]
    pub fn test_min() {
        let p1 = Point2D::new(1.0, 3.0);
        let p2 = Point2D::new(2.0, 2.0);

        let result = p1.min(p2);

        assert_eq!(result, Point2D::new(1.0, 2.0));
    }

    #[test]
    pub fn test_max() {
        let p1 = Point2D::new(1.0, 3.0);
        let p2 = Point2D::new(2.0, 2.0);

        let result = p1.max(p2);

        assert_eq!(result, Point2D::new(2.0, 3.0));
    }

    #[cfg(feature = "mint")]
    #[test]
    pub fn test_mint() {
        let p1 = Point2D::new(1.0, 3.0);
        let pm: mint::Point2<_> = p1.into();
        let p2 = Point2D::from(pm);

        assert_eq!(p1, p2);
    }

    #[test]
    pub fn test_conv_vector() {
        for i in 0..100 {
            // We don't care about these values as long as they are not the same.
            let x = i as f32 * 0.012345;
            let y = i as f32 * 0.987654;
            let p: Point2D<f32> = point2(x, y);
            assert_eq!(p.to_vector().to_point(), p);
        }
    }

    #[test]
    pub fn test_swizzling() {
        let p: Point2D<i32> = point2(1, 2);
        assert_eq!(p.yx(), point2(2, 1));
    }

    #[test]
    pub fn test_distance_to() {
        let p1 = Point2D::new(1.0, 2.0);
        let p2 = Point2D::new(2.0, 2.0);

        assert_eq!(p1.distance_to(p2), 1.0);

        let p1 = Point2D::new(1.0, 2.0);
        let p2 = Point2D::new(1.0, 4.0);

        assert_eq!(p1.distance_to(p2), 2.0);
    }

    mod ops {
        use crate::default::Point2D;
        use crate::scale::Scale;
        use crate::{size2, vec2, Vector2D};

        pub enum Mm {}
        pub enum Cm {}

        pub type Point2DMm<T> = crate::Point2D<T, Mm>;
        pub type Point2DCm<T> = crate::Point2D<T, Cm>;

        #[test]
        pub fn test_neg() {
            assert_eq!(-Point2D::new(1.0, 2.0), Point2D::new(-1.0, -2.0));
            assert_eq!(-Point2D::new(0.0, 0.0), Point2D::new(-0.0, -0.0));
            assert_eq!(-Point2D::new(-1.0, -2.0), Point2D::new(1.0, 2.0));
        }

        #[test]
        pub fn test_add_size() {
            let p1 = Point2DMm::new(1.0, 2.0);
            let p2 = size2(3.0, 4.0);

            let result = p1 + p2;

            assert_eq!(result, Point2DMm::new(4.0, 6.0));
        }

        #[test]
        pub fn test_add_assign_size() {
            let mut p1 = Point2DMm::new(1.0, 2.0);

            p1 += size2(3.0, 4.0);

            assert_eq!(p1, Point2DMm::new(4.0, 6.0));
        }

        #[test]
        pub fn test_add_vec() {
            let p1 = Point2DMm::new(1.0, 2.0);
            let p2 = vec2(3.0, 4.0);

            let result = p1 + p2;

            assert_eq!(result, Point2DMm::new(4.0, 6.0));
        }

        #[test]
        pub fn test_add_assign_vec() {
            let mut p1 = Point2DMm::new(1.0, 2.0);

            p1 += vec2(3.0, 4.0);

            assert_eq!(p1, Point2DMm::new(4.0, 6.0));
        }

        #[test]
        pub fn test_sub() {
            let p1 = Point2DMm::new(1.0, 2.0);
            let p2 = Point2DMm::new(3.0, 4.0);

            let result = p1 - p2;

            assert_eq!(result, Vector2D::<_, Mm>::new(-2.0, -2.0));
        }

        #[test]
        pub fn test_sub_size() {
            let p1 = Point2DMm::new(1.0, 2.0);
            let p2 = size2(3.0, 4.0);

            let result = p1 - p2;

            assert_eq!(result, Point2DMm::new(-2.0, -2.0));
        }

        #[test]
        pub fn test_sub_assign_size() {
            let mut p1 = Point2DMm::new(1.0, 2.0);

            p1 -= size2(3.0, 4.0);

            assert_eq!(p1, Point2DMm::new(-2.0, -2.0));
        }

        #[test]
        pub fn test_sub_vec() {
            let p1 = Point2DMm::new(1.0, 2.0);
            let p2 = vec2(3.0, 4.0);

            let result = p1 - p2;

            assert_eq!(result, Point2DMm::new(-2.0, -2.0));
        }

        #[test]
        pub fn test_sub_assign_vec() {
            let mut p1 = Point2DMm::new(1.0, 2.0);

            p1 -= vec2(3.0, 4.0);

            assert_eq!(p1, Point2DMm::new(-2.0, -2.0));
        }

        #[test]
        pub fn test_mul_scalar() {
            let p1: Point2D<f32> = Point2D::new(3.0, 5.0);

            let result = p1 * 5.0;

            assert_eq!(result, Point2D::new(15.0, 25.0));
        }

        #[test]
        pub fn test_mul_assign_scalar() {
            let mut p1 = Point2D::new(3.0, 5.0);

            p1 *= 5.0;

            assert_eq!(p1, Point2D::new(15.0, 25.0));
        }

        #[test]
        pub fn test_mul_scale() {
            let p1 = Point2DMm::new(1.0, 2.0);
            let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);

            let result = p1 * cm_per_mm;

            assert_eq!(result, Point2DCm::new(0.1, 0.2));
        }

        #[test]
        pub fn test_mul_assign_scale() {
            let mut p1 = Point2DMm::new(1.0, 2.0);
            let scale: Scale<f32, Mm, Mm> = Scale::new(0.1);

            p1 *= scale;

            assert_eq!(p1, Point2DMm::new(0.1, 0.2));
        }

        #[test]
        pub fn test_div_scalar() {
            let p1: Point2D<f32> = Point2D::new(15.0, 25.0);

            let result = p1 / 5.0;

            assert_eq!(result, Point2D::new(3.0, 5.0));
        }

        #[test]
        pub fn test_div_assign_scalar() {
            let mut p1: Point2D<f32> = Point2D::new(15.0, 25.0);

            p1 /= 5.0;

            assert_eq!(p1, Point2D::new(3.0, 5.0));
        }

        #[test]
        pub fn test_div_scale() {
            let p1 = Point2DCm::new(0.1, 0.2);
            let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);

            let result = p1 / cm_per_mm;

            assert_eq!(result, Point2DMm::new(1.0, 2.0));
        }

        #[test]
        pub fn test_div_assign_scale() {
            let mut p1 = Point2DMm::new(0.1, 0.2);
            let scale: Scale<f32, Mm, Mm> = Scale::new(0.1);

            p1 /= scale;

            assert_eq!(p1, Point2DMm::new(1.0, 2.0));
        }

        #[test]
        pub fn test_point_debug_formatting() {
            let n = 1.23456789;
            let p1 = Point2D::new(n, -n);
            let should_be = format!("({:.4}, {:.4})", n, -n);

            let got = format!("{:.4?}", p1);

            assert_eq!(got, should_be);
        }
    }

    mod euclid {
        use crate::default::{Point2D, Size2D};
        use crate::point2;

        #[test]
        pub fn test_rem_euclid() {
            let p = Point2D::new(7.0, -7.0);
            let s = Size2D::new(4.0, -4.0);

            assert_eq!(p.rem_euclid(&s), point2(3.0, 1.0));
            assert_eq!((-p).rem_euclid(&s), point2(1.0, 3.0));
            assert_eq!(p.rem_euclid(&-s), point2(3.0, 1.0));
        }

        #[test]
        pub fn test_div_euclid() {
            let p = Point2D::new(7.0, -7.0);
            let s = Size2D::new(4.0, -4.0);

            assert_eq!(p.div_euclid(&s), point2(1.0, 2.0));
            assert_eq!((-p).div_euclid(&s), point2(-2.0, -1.0));
            assert_eq!(p.div_euclid(&-s), point2(-1.0, -2.0));
        }
    }
}

#[cfg(test)]
mod point3d {
    use crate::default;
    use crate::default::Point3D;
    use crate::{point2, point3};
    #[cfg(feature = "mint")]
    use mint;

    #[test]
    pub fn test_min() {
        let p1 = Point3D::new(1.0, 3.0, 5.0);
        let p2 = Point3D::new(2.0, 2.0, -1.0);

        let result = p1.min(p2);

        assert_eq!(result, Point3D::new(1.0, 2.0, -1.0));
    }

    #[test]
    pub fn test_max() {
        let p1 = Point3D::new(1.0, 3.0, 5.0);
        let p2 = Point3D::new(2.0, 2.0, -1.0);

        let result = p1.max(p2);

        assert_eq!(result, Point3D::new(2.0, 3.0, 5.0));
    }

    #[test]
    pub fn test_conv_vector() {
        use crate::point3;
        for i in 0..100 {
            // We don't care about these values as long as they are not the same.
            let x = i as f32 * 0.012345;
            let y = i as f32 * 0.987654;
            let z = x * y;
            let p: Point3D<f32> = point3(x, y, z);
            assert_eq!(p.to_vector().to_point(), p);
        }
    }

    #[test]
    pub fn test_swizzling() {
        let p: default::Point3D<i32> = point3(1, 2, 3);
        assert_eq!(p.xy(), point2(1, 2));
        assert_eq!(p.xz(), point2(1, 3));
        assert_eq!(p.yz(), point2(2, 3));
    }

    #[test]
    pub fn test_distance_to() {
        let p1 = Point3D::new(1.0, 2.0, 3.0);
        let p2 = Point3D::new(2.0, 2.0, 3.0);

        assert_eq!(p1.distance_to(p2), 1.0);

        let p1 = Point3D::new(1.0, 2.0, 3.0);
        let p2 = Point3D::new(1.0, 4.0, 3.0);

        assert_eq!(p1.distance_to(p2), 2.0);

        let p1 = Point3D::new(1.0, 2.0, 3.0);
        let p2 = Point3D::new(1.0, 2.0, 6.0);

        assert_eq!(p1.distance_to(p2), 3.0);
    }

    #[cfg(feature = "mint")]
    #[test]
    pub fn test_mint() {
        let p1 = Point3D::new(1.0, 3.0, 5.0);
        let pm: mint::Point3<_> = p1.into();
        let p2 = Point3D::from(pm);

        assert_eq!(p1, p2);
    }

    mod ops {
        use crate::default::Point3D;
        use crate::scale::Scale;
        use crate::{size3, vec3, Vector3D};

        pub enum Mm {}
        pub enum Cm {}

        pub type Point3DMm<T> = crate::Point3D<T, Mm>;
        pub type Point3DCm<T> = crate::Point3D<T, Cm>;

        #[test]
        pub fn test_neg() {
            assert_eq!(-Point3D::new(1.0, 2.0, 3.0), Point3D::new(-1.0, -2.0, -3.0));
            assert_eq!(-Point3D::new(0.0, 0.0, 0.0), Point3D::new(-0.0, -0.0, -0.0));
            assert_eq!(-Point3D::new(-1.0, -2.0, -3.0), Point3D::new(1.0, 2.0, 3.0));
        }

        #[test]
        pub fn test_add_size() {
            let p1 = Point3DMm::new(1.0, 2.0, 3.0);
            let p2 = size3(4.0, 5.0, 6.0);

            let result = p1 + p2;

            assert_eq!(result, Point3DMm::new(5.0, 7.0, 9.0));
        }

        #[test]
        pub fn test_add_assign_size() {
            let mut p1 = Point3DMm::new(1.0, 2.0, 3.0);

            p1 += size3(4.0, 5.0, 6.0);

            assert_eq!(p1, Point3DMm::new(5.0, 7.0, 9.0));
        }

        #[test]
        pub fn test_add_vec() {
            let p1 = Point3DMm::new(1.0, 2.0, 3.0);
            let p2 = vec3(4.0, 5.0, 6.0);

            let result = p1 + p2;

            assert_eq!(result, Point3DMm::new(5.0, 7.0, 9.0));
        }

        #[test]
        pub fn test_add_assign_vec() {
            let mut p1 = Point3DMm::new(1.0, 2.0, 3.0);

            p1 += vec3(4.0, 5.0, 6.0);

            assert_eq!(p1, Point3DMm::new(5.0, 7.0, 9.0));
        }

        #[test]
        pub fn test_sub() {
            let p1 = Point3DMm::new(1.0, 2.0, 3.0);
            let p2 = Point3DMm::new(4.0, 5.0, 6.0);

            let result = p1 - p2;

            assert_eq!(result, Vector3D::<_, Mm>::new(-3.0, -3.0, -3.0));
        }

        #[test]
        pub fn test_sub_size() {
            let p1 = Point3DMm::new(1.0, 2.0, 3.0);
            let p2 = size3(4.0, 5.0, 6.0);

            let result = p1 - p2;

            assert_eq!(result, Point3DMm::new(-3.0, -3.0, -3.0));
        }

        #[test]
        pub fn test_sub_assign_size() {
            let mut p1 = Point3DMm::new(1.0, 2.0, 3.0);

            p1 -= size3(4.0, 5.0, 6.0);

            assert_eq!(p1, Point3DMm::new(-3.0, -3.0, -3.0));
        }

        #[test]
        pub fn test_sub_vec() {
            let p1 = Point3DMm::new(1.0, 2.0, 3.0);
            let p2 = vec3(4.0, 5.0, 6.0);

            let result = p1 - p2;

            assert_eq!(result, Point3DMm::new(-3.0, -3.0, -3.0));
        }

        #[test]
        pub fn test_sub_assign_vec() {
            let mut p1 = Point3DMm::new(1.0, 2.0, 3.0);

            p1 -= vec3(4.0, 5.0, 6.0);

            assert_eq!(p1, Point3DMm::new(-3.0, -3.0, -3.0));
        }

        #[test]
        pub fn test_mul_scalar() {
            let p1: Point3D<f32> = Point3D::new(3.0, 5.0, 7.0);

            let result = p1 * 5.0;

            assert_eq!(result, Point3D::new(15.0, 25.0, 35.0));
        }

        #[test]
        pub fn test_mul_assign_scalar() {
            let mut p1: Point3D<f32> = Point3D::new(3.0, 5.0, 7.0);

            p1 *= 5.0;

            assert_eq!(p1, Point3D::new(15.0, 25.0, 35.0));
        }

        #[test]
        pub fn test_mul_scale() {
            let p1 = Point3DMm::new(1.0, 2.0, 3.0);
            let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);

            let result = p1 * cm_per_mm;

            assert_eq!(result, Point3DCm::new(0.1, 0.2, 0.3));
        }

        #[test]
        pub fn test_mul_assign_scale() {
            let mut p1 = Point3DMm::new(1.0, 2.0, 3.0);
            let scale: Scale<f32, Mm, Mm> = Scale::new(0.1);

            p1 *= scale;

            assert_eq!(p1, Point3DMm::new(0.1, 0.2, 0.3));
        }

        #[test]
        pub fn test_div_scalar() {
            let p1: Point3D<f32> = Point3D::new(15.0, 25.0, 35.0);

            let result = p1 / 5.0;

            assert_eq!(result, Point3D::new(3.0, 5.0, 7.0));
        }

        #[test]
        pub fn test_div_assign_scalar() {
            let mut p1: Point3D<f32> = Point3D::new(15.0, 25.0, 35.0);

            p1 /= 5.0;

            assert_eq!(p1, Point3D::new(3.0, 5.0, 7.0));
        }

        #[test]
        pub fn test_div_scale() {
            let p1 = Point3DCm::new(0.1, 0.2, 0.3);
            let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);

            let result = p1 / cm_per_mm;

            assert_eq!(result, Point3DMm::new(1.0, 2.0, 3.0));
        }

        #[test]
        pub fn test_div_assign_scale() {
            let mut p1 = Point3DMm::new(0.1, 0.2, 0.3);
            let scale: Scale<f32, Mm, Mm> = Scale::new(0.1);

            p1 /= scale;

            assert_eq!(p1, Point3DMm::new(1.0, 2.0, 3.0));
        }
    }

    mod euclid {
        use crate::default::{Point3D, Size3D};
        use crate::point3;

        #[test]
        pub fn test_rem_euclid() {
            let p = Point3D::new(7.0, -7.0, 0.0);
            let s = Size3D::new(4.0, -4.0, 12.0);

            assert_eq!(p.rem_euclid(&s), point3(3.0, 1.0, 0.0));
            assert_eq!((-p).rem_euclid(&s), point3(1.0, 3.0, 0.0));
            assert_eq!(p.rem_euclid(&-s), point3(3.0, 1.0, 0.0));
        }

        #[test]
        pub fn test_div_euclid() {
            let p = Point3D::new(7.0, -7.0, 0.0);
            let s = Size3D::new(4.0, -4.0, 12.0);

            assert_eq!(p.div_euclid(&s), point3(1.0, 2.0, 0.0));
            assert_eq!((-p).div_euclid(&s), point3(-2.0, -1.0, 0.0));
            assert_eq!(p.div_euclid(&-s), point3(-1.0, -2.0, 0.0));
        }
    }
}

二、Point2D结构体定义

代码定义了一个名为 Point2D 的泛型结构体,它表示一个二维点,并且这个结构体被标记(或说是“携带”)了一个单位(unit)。这里的单位可能是用来表示坐标的某种度量单位或者其它信息,但具体是什么并不在这个结构体定义中明确给出,而是通过泛型参数 U 提供的。

1、源码

#[repr(C)]
pub struct Point2D<T, U> {
    pub x: T,
    pub y: T,
    #[doc(hidden)]
    pub _unit: PhantomData<U>,
}

2、泛型参数

Point2D<T, U> 有两个泛型参数,T 和 U。T 用于表示点的坐标类型(比如 f32、f64、i32 等),而 U 用于表示与这个点相关的单位信息。

3、字段

  • pub x: T:表示点的 X 坐标,其类型为泛型 T。
  • pub y: T:表示点的 Y 坐标,其类型也为泛型 T。
  • #[doc(hidden)] pub _unit: PhantomData< U >:这里使用了 PhantomData< U > 来携带单位信息 U 而不占用实际的内存空间。PhantomData 是一个在标准库中定义的结构体,用于在泛型代码中表示某种类型存在而不增加运行时的大小。#[doc(hidden)] 属性意味着这个字段在生成的文档中会被隐藏,可能是因为它对于最终用户来说不是很有用或者是一个实现细节。

4、#[repr©] 属性

这个属性指定了结构体的内存布局应该与 C 语言中的结构体布局兼容。这对于与 C 语言代码进行互操作时非常有用,因为它确保了结构体中字段的顺序和内存对齐方式与 C 语言中的相同。

5、总结

Point2D<T, U> 是一个用于表示二维点的泛型结构体,它允许指定坐标的类型(T)和与该点相关的单位信息(U),而不增加任何实际的内存开销用于存储单位信息。

三、二维点特性实现

  1. Copy 实现:
    对于任何实现了Copy特性的T类型,Point2D<T, U>也实现了Copy。这意味着Point2D的实例可以通过值复制,而不需要显式的克隆操作。
  2. Clone 实现:
    对于任何实现了Clone特性的T类型,Point2D<T, U>也实现了Clone。clone方法通过调用x和y的clone方法,创建了Point2D的一个新实例。
  3. 序列化和反序列化(依赖serde库):
    当启用serde特性时,Point2D<T, U>可以被序列化和反序列化,只要T类型支持相应的操作。这允许Point2D实例被方便地转换为JSON等格式,或从JSON等格式恢复。

四、二维点实用方法

  1. map 方法:
  • map方法接受一个闭包f,并将Point2D的每个坐标值(x和y)作为参数传递给闭包,生成一个新的Point2D实例,其坐标类型为闭包返回的类型V。
  • 这允许对点的坐标进行各种转换,比如饱和减法(saturating_sub),而不改变点的类型参数U。
  1. zip 方法:
  • zip方法接受另一个Point2D实例rhs和一个闭包f,对两个点的对应坐标值应用闭包f,生成一个新的Vector2D实例(假设Vector2D是一个二维向量结构)。
  • 这允许对两个点的坐标进行成对的转换,比如计算两个点之间的差值(如示例中的饱和减法)。
  1. extend 方法:
  • 将一个二维点扩展为一个三维点,通过指定一个z值。
  • 参数z的类型与点的x和y坐标类型相同(T)。
  • 返回Point3D<T, U>类型的新实例。
  1. to_vector 方法:
  • 将点转换为一个向量。这在数学上等同于从原点(0,0)减去该点。
  • 返回Vector2D<T, U>类型的新实例。
  • 使用PhantomData来携带单位类型U,但在此方法中未直接使用U。
  1. yx 方法:
  • 交换点的x和y坐标。
  • 返回与输入相同类型的新实例(Self类型)。
  • 示例代码展示了如何使用这个方法。
  1. ceil 方法:
  • 对点的每个坐标值向上取整(即,取不小于原数的最小整数)。
  • 需要在T类型上实现Ceil trait(这通常意味着T是支持浮点运算的类型,如f32或f64)。
  • 返回与输入相同类型的新实例。
  • 示例代码展示了如何处理负数的向上取整。
  1. floor 方法:
  • 对点的每个坐标值向下取整(即,取不大于原数的最大整数)。
  • 需要在T类型上实现Floor trait(类似于Ceil)。
  • 返回与输入相同类型的新实例。
  • 示例代码展示了如何处理负数的向下取整。
  1. 线性插值方法 (lerp)
    线性插值方法lerp接受当前点(self)、另一个点(other)和一个参数t,然后返回这两个点之间的一个新点,这个点位于从当前点到另一个点的直线上,具体位置由t决定。t的取值范围是实数,通常用于动画和渐变效果中。当t=0.0时,返回当前点;当t=1.0时,返回另一个点;当t在0到1之间时,返回两点之间的某个点;当t超出这个范围时,返回的是当前点和另一个点之外的点。
    代码实现是正确的,但需要注意,当t为负值或大于1时,返回的点可能会超出原始两点的范围,这在某些情况下是有用的,但在其他情况下可能不是预期的行为。
    转换为整数类型的方法
    to_i32和to_i64方法将二维点的坐标从浮点数转换为整数(i32或i64),这里假设原始点的坐标是浮点数。这些方法简单地将浮点数坐标截断为整数,这可能会导致精度损失。在转换之前,您可能希望使用round(), ceil(), 或floor()函数来决定如何处理小数部分。

  2. min 方法
    min方法的描述中似乎有些文本缺失,但从上下文中可以推断,它应该返回一个新点,该点的每个坐标都是当前点和另一个点相应坐标中的最小值。这个方法的实现可能需要比较两个点的x和y坐标,并返回一个新点,其x和y坐标分别是这两个点对应坐标的最小值。

  3. is_finite 方法
    is_finite方法检查点的x和y坐标是否都是有限的(不是NaN或无穷大)。这对于数值计算的安全性很重要,可以避免因为使用了无效数值而导致的不可预测行为。

  4. add_size 方法
    add_size方法将一个Size2D对象(表示宽度和高度)加到当前点上,返回一个新点。这个方法可能用于在图形界面编程中调整点的位置,以适应新的大小或边界。

  5. 距离计算 (distance_to 方法):

  • 实现了两个Point2D实例之间的距离计算。
  • 它依赖于T类型实现了Real和Sub trait(Real不是Rust标准库的一部分,可能来自某个数学库,表示实数类型;Sub用于执行减法操作)。
  • 方法内部通过减去另一个点并调用.length()方法计算距离。
  1. 取反 (Neg trait实现):
  • 允许对Point2D实例进行取反操作(即坐标乘以-1)。
  • 依赖于T类型实现了Neg trait。
  1. 与Size2D相加 (Add trait实现):
  • 允许将Point2D与Size2D相加,可能用于将点的位置按照某个尺寸进行偏移。
  • 依赖于T类型实现了Add trait。
  1. 就地与Size2D相加 (AddAssign trait实现):
  • 类似于Add,但直接在原地修改Point2D实例。
  • 依赖于T类型实现了AddAssign trait。
  1. 与Vector2D相加 (Add trait的另一个实现):
  • 允许将Point2D与Vector2D相加,可能用于将点的位置按照某个向量进行移动。
  • 依赖于T类型实现了Add trait。
  1. 零值 (Zero trait实现):
  • 提供了Point2D的零值(原点)。
  • 依赖于T类型实现了Zero trait。
  1. 四舍五入 (Round trait实现):
  • 对Point2D的每个坐标进行四舍五入。
  • 依赖于T类型实现了Round trait。
  1. 向上取整 (Ceil trait实现):
  • 对Point2D的每个坐标进行向上取整。
  • 依赖于T类型实现了Ceil trait。
  1. 向下取整 (Floor trait实现):
  • 对Point2D的每个坐标进行向下取整。
  • 依赖于T类型实现了Floor trait。
  1. 近似相等 (ApproxEq trait实现):
  • 允许比较两个Point2D实例是否在指定的误差范围内近似相等。
  • 依赖于T类型实现了ApproxEq trait。
  1. rem_euclid方法:
    +这个方法计算Point2D对象self相对于另一个Size2D对象other的欧几里得余数。
  • 欧几里得余数与普通余数不同,它总是非负的。
  • 方法接受一个&Size2D<T, U>作为参数,返回一个新的Point2D<T, U>,其中每个坐标都是self对应坐标对other对应维度的欧几里得余数。
  1. div_euclid方法:
  • 这个方法计算Point2D对象self相对于另一个Size2D对象other的欧几里得除法结果。
  • euclid除法返回的是商,即self每个坐标除以other对应维度的整数部分。
  • 同样,方法接受一个&Size2D<T, U>作为参数,返回一个新的Point2D<T, U>。
  1. 实现Point2D<T, U>到[T; 2]的转换:
  • 通过实现From<Point2D<T, U>> for [T; 2] trait,允许将Point2D转换为包含两个T类型元素的数组。
  • 转换直接取Point2D的x和y坐标作为数组的两个元素。
  1. 实现[T; 2]到Point2D<T, U>的转换:
  • 通过实现From<[T; 2]> for Point2D<T, U> trait,允许将包含两个T类型元素的数组转换为Point2D。
  • 转换将数组的前两个元素分别作为Point2D的x和y坐标。
  1. 实现Point2D<T, U>到(T, T)的转换:
  • 通过实现From<Point2D<T, U>> for (T, T) trait,允许将Point2D转换为包含两个T类型元素的元组。
  • 转换与到数组的转换类似,取Point2D的x和y坐标作为元组的两个元素。
  1. 实现(T, T)到Point2D<T, U>的转换:
  • 通过实现From<(T, T)> for Point2D<T, U> trait,允许将包含两个T类型元素的元组转换为Point2D。
  • 转换将元组的两个元素分别作为Point2D的x和y坐标。

五、Point3D结构体

比Point2D多一个z值,方法与Point2D相似。


http://www.kler.cn/a/529551.html

相关文章:

  • Pyecharts之图表样式深度定制
  • 基于Python的简单企业维修管理系统的设计与实现
  • 使用LLaMA-Factory对AI进行认知的微调
  • vue虚拟列表优化前端性能
  • 【13】WLC HA介绍和配置
  • 论文阅读笔记 —— 英文论文常见缩写及含义
  • 面经——C语言——指针大小,内存分配,野指针,大小端
  • 【LeetCode: 598. 区间加法 II + 脑筋急转弯】
  • 我的Go+语言初体验——环境搭建并用命令行和 VScode 输出 “Hello World”_gop windows helloworld
  • 一些常用的HTML结构
  • 使用 EXISTS 解决 SQL 中 IN 查询数量过多的问题
  • C++ 哈希封装详解
  • E. Money Buys Happiness
  • UE5 蓝图计划 - Day 2-3:执行流与事件
  • 大模型能力评估数据集都有哪些?
  • 贪吃蛇实现
  • SpringBoot的配置(配置文件、加载顺序、配置原理)
  • UE5 蓝图学习计划 - Day 11:材质与特效
  • 大模型训练(5):Zero Redundancy Optimizer(ZeRO零冗余优化器)
  • 操作系统和中间件的信息收集
  • 踏入编程世界的第一个博客
  • 在 Ubuntu 中使用 Conda 创建和管理虚拟环境
  • 使用朴素贝叶斯对散点数据进行分类
  • 5分钟在本地PC上使用VLLM快速启动DeepSeek-R1-Distill-Qwen-32B
  • Github 2025-02-02 php开源项目日报 Top10
  • Windows程序设计11:文件的查找与遍历