当前位置: 首页 > article >正文

【论文复现】基于Otsu方法的多阈值图像分割改进鲸鱼优化算法

目录

    • 1.摘要
    • 2.鲸鱼优化算法WOA原理
    • 3.改进策略
    • 4.结果展示
    • 5.参考文献
    • 6.代码获取


在这里插入图片描述

1.摘要

本文提出了一种基于Otsu方法的多阈值图像分割改进鲸鱼优化算法(RAV-WOA)。RAV-WOA算法能够在分割灰度图像和彩色图像时,自动选择最优阈值,并确保高效性和高质量。本文引入了反向学习策略来优化鲸鱼种群的初始化,提升了初始种群的质量。此外,针对全局搜索能力和局部开发能力的平衡问题,同时加入了自适应加权策略会根据适应度值和迭代次数进行动态调整。

2.鲸鱼优化算法WOA原理

SCI二区|鲸鱼优化算法(WOA)原理及实现

3.改进策略

自适应加权策略

本文提出了一种可变自适应权重机制,用于动态调整领头鲸的最优位置。当领头鲸远离最优位置时,自适应权重会对其产生较强的扰动;而当领头鲸接近最优位置时,扰动则会减弱。在鲸鱼搜索猎物时,首先根据适应度值对个体鲸鱼进行排序,并将当前处于最佳和最差位置的鲸鱼划分为三等份,得到适应度阈值 s 1 s_1 s1 s 2 s_2 s2,其中 s 1 < s 2 s_1<s_2 s1<s2。然后,当前鲸鱼的位置与这两个阈值 s 1 s_1 s1 s 2 s_2 s2进行比较,从而实现动态的自适应位置更新。
ω = { ω a v g + ( ω a v g − ω min ⁡ ) f i − s 1 f min ⁡ − s 1 f i < s 1 τ ( t − t max ⁡ ϵ − t max ⁡ ) + φ ( f i − s 1 s 2 − f i ) s 1 < f i < s 2 ω a v g − ( ω max ⁡ − ω a v g ) ( f i − s 2 f max ⁡ − s 2 ) f i > s 2 \omega= \begin{cases} \omega_{avg}+(\omega_{avg}-\omega_{\min})\frac{f_i-s_1}{f_{\min}-s_1} & \quad f_i<s_1 \\ \tau(\frac{t-t_{\max}}{\epsilon-t_{\max}})+\varphi(\frac{f_i-s_1}{s_2-f_i}) & \quad s_1<f_i<s_2 \\ \omega_{avg}-(\omega_{\max}-\omega_{avg})(\frac{f_i-s_2}{f_{\max}-s_2}) & \quad f_i>s_2 & \end{cases} ω= ωavg+(ωavgωmin)fmins1fis1τ(ϵtmaxttmax)+φ(s2fifis1)ωavg(ωmaxωavg)(fmaxs2fis2)fi<s1s1<fi<s2fi>s2

自适应权重策略被应用于鲸鱼的螺旋狩猎行为和周围的狩猎行为,鲸鱼位置更新:
{ X ( t + 1 ) = ω ⋅ X ( t ) − A ⋅ D i f p ≤ a t h X ( t + 1 ) = D ′ ⋅ e b l ⋅ cos ⁡ ( 2 π l ) + ω ⋅ X ∗ ( t ) i f p > a t h \begin{cases} X(t+1) & =\omega\cdot X(t)-A\cdot D\quad ifp\leq ath \\ \\ X(t+1) & =D^{\prime}\cdot e^{bl}\cdot\cos(2\pi l)+\omega\cdot X^*(t)\quad ifp>ath \end{cases} X(t+1)X(t+1)=ωX(t)ADifpath=Deblcos(2πl)+ωX(t)ifp>ath

水平交叉和垂直交叉策略

在鲸鱼优化算法(WOA)中,处于最优位置的鲸鱼对整个种群起着引导作用。如果此时最优位置的鲸鱼陷入局部最优解,其他鲸鱼个体将会向局部最优解聚集,从而导致种群多样性的降低。为了平衡算法的全局开发能力与局部搜索能力,引入了水平交叉和垂直交叉策略。水平交叉策略允许种群在搜索空间的边界时增强算法的全局搜索能力,而垂直交叉策略则允许种群在不同维度之间进行交叉操作,帮助种群在某一维度上跳出局部最优解。通过比较水平交叉和垂直交叉策略产生的最优解与其父代个体,选择较优的结果作为算法的最优解。
E i , d h c = u 1 ⋅ Q i , d + ( 1 − u 1 ) ⋅ Q j , d + v 1 ⋅ ( Q i , d − Q j , d ) E j , d h c = u 2 ⋅ Q j , d + ( 1 − u 2 ) ⋅ Q i , d + v 2 ⋅ ( Q j , d − Q i , d ) \begin{aligned} E_{i,d}^{hc} & =u_1\cdot Q_{i,d}+(1-u_1)\cdot Q_{j,d}+v_1\cdot(Q_{i,d}-Q_{j,d}) \\ E_{j,d}^{hc} & =u_2\cdot Q_{j,d}+(1-u_2)\cdot Q_{i,d}+v_2\cdot(Q_{j,d}-Q_{i,d}) \end{aligned} Ei,dhcEj,dhc=u1Qi,d+(1u1)Qj,d+v1(Qi,dQj,d)=u2Qj,d+(1u2)Qi,d+v2(Qj,dQi,d)

Q i , d 1 v c = q ⋅ Q i , d 1 + ( 1 − q ) ⋅ Q i , d 2 Q_{i,d_1}^{vc}=q\cdot Q_{i,d_1}+(1-q)\cdot Q_{i,d_2} Qi,d1vc=qQi,d1+(1q)Qi,d2

流程图

在这里插入图片描述

4.结果展示

CEC2019

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

图像分割

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.参考文献

[1] Ma G, Yue X. An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method[J]. Engineering Applications of Artificial Intelligence, 2022, 113: 104960.

6.代码获取


http://www.kler.cn/a/530167.html

相关文章:

  • 图书管理系统 Axios 源码__获取图书列表
  • 梯度提升用于高效的分类与回归
  • deep generative model stanford lecture note2 --- autoregressive
  • 【SSM】Spring + SpringMVC + Mybatis
  • hot100_21. 合并两个有序链表
  • Qt调用FFmpeg库实时播放UDP组播视频流
  • LLMs之OpenAI o系列:OpenAI o3-mini的简介、安装和使用方法、案例应用之详细攻略
  • 【每天学习一点点】通过使用@property装饰器来创建一个属性的getter和setter方法
  • 【周易哲学】生辰八字入门讲解(八)
  • STM32 DMA数据转运
  • leetcode 930. 和相同的二元子数组
  • 【人工智能】使用Python和Hugging Face构建情感分析应用:从模型训练到Web部署
  • ASP.NET Core Filter
  • 一文讲解Java中HashMap的put流程
  • 完全卸载mysql server步骤
  • Unity游戏(Assault空对地打击)开发(3) 摄像机的控制
  • C# 精炼题18道题(类,三木运算,Switch,计算器)
  • DeepSeek与OpenAI:谁是AI领域的更优选择?
  • 04树 + 堆 + 优先队列 + 图(D1_树(D8_B*树(B*)))
  • 书生大模型实战营7
  • openmv的端口被拆分为两个 导致电脑无法访问openmv文件系统解决办法 openmv USB功能改动 openmv驱动被更改如何修复
  • 人工智能学习(四)之机器学习基本概念
  • work-stealing算法 ForkJoinPool
  • 【C语言】填空题/程序填空题1
  • 第三百六十节 JavaFX教程 - JavaFX 进度显示器
  • 2025-工具集合整理