当前位置: 首页 > article >正文

deepseek 本地化部署和小模型微调

安装ollama

因为本人gpu卡的机器系统是centos 7, 直接使用ollama会报

所以ollama使用镜像方式进行部署, 拉取镜像ollama/ollama

启动命令

docker run -d --privileged -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

查看ollama 是否启动成功,Ollama 没有用户界面,在后台运行。

打开浏览器,输入 “http://xx:11434/”,显示 “Ollama is running”。

docker exec -it ollama ollama list

deepseek-r1 目前有7b, 32b, 70b, 671b 多个版本, 考虑到下载时间目前只下载最大70b的模型

应该说Deepseek 底层应该是很牛,两张40卡都能跑70B参数的模型

安装openwebui

Open-webui 则提供直观的 Web 用户界面来与 Ollama 平台进行交互。直接使用docker进行部署

docker run -d --privileged -p 3000:8080 \
  --add-host=host.docker.internal:host-gateway \
  -v /data/openwebui:/app/backend/data \
  -e TRANSFORMERS_CACHE=/app/backend/data/huggingface/cache \
  -e HF_DATASETS_CACHE=/app/backend/data/huggingface/datasets \
  -e HF_ENDPOINT=https://hf-mirror.com \
  --name open-webui --restart always \
  ghcr.io/open-webui/open-webui:main

打开3000端口选择70b的模型

使用下deepseek的深度思考模式

下面演示下如何对DeepSeek-V1:7b模型进行微调,让模型成为一位算命大师

微调代码参考self-llm/models/DeepSeek at master · datawhalechina/self-llm · GitHub

R1 和 V1 的区别集中在 优化方向(速度、领域、资源)或 迭代阶段(V1 为初版,R1 为改进版)模型微调通过 peft 库来实现模型的 LoRA 微调。peft 库是 huggingface 开发的第三方库,其中封装了包括 LoRA、Adapt Tuning、P-tuning 等多种高效微调方法,可以基于此便捷地实现模型的 LoRA 微调。

微调数据格式化

准备一份微调数据

instruction :用户指令,告知模型其需要完成的任务;

input :用户输入,是完成用户指令所必须的输入内容;

output :模型应该给出的输出。

如果你的 JSON 文件包含多个 JSON 对象而不是一个有效的 JSON 数组,Pandas 将无法处理。例如,以下格式是不正确的:

{"key1": "value1"}
{"key2": "value2"}

转化下该格式到正确json格式

import json

input_file = 'data.json'
output_file = 'corrected_data.json'

json_objects = []

with open(input_file, 'r', encoding='utf-8') as f:
    for line in f:
        line = line.strip()  # 去除前后空白
        if line:  # 确保行不为空
            try:
                json_objects.append(json.loads(line))
            except json.JSONDecodeError as e:
                print(f"Error decoding JSON: {e} - Line: {line}")

if json_objects:
    with open(output_file, 'w', encoding='utf-8') as f:
        json.dump(json_objects, f, ensure_ascii=False, indent=4)

print(f"Corrected JSON format has been saved to {output_file}.")

后面训练的时候会使用,是从一个 JSON 文件中读取数据,将其转换为 Pandas DataFrame,然后进一步转换为 Hugging Face 的 Dataset 对象。接着,它对这个数据集应用一个名为 process_func 的处理函数,最终返回一个经过处理的 tokenized 数据集,返回处理后的数据集 tokenized_id,通常是一个包含 token ID 或其他处理结果的新数据集。

def get_tokenized_id(json_file):
  df = pd.read_json(json_file)
  ds = Dataset.from_pandas(df)

  # 处理数据集
  tokenized_id = ds.map(process_func, remove_columns=ds.column_names)
  # print(tokenized_id)

  return tokenized_id

安装了huggingface_cli库,可以使用进行安装。

pip install huggingface-cli

修改下载源:

export HF_ENDPOINT="https://hf-mirror.com"

下载deepseek-vl-7b-chat 到models文件夹

huggingface-cli download deepseek-ai/deepseek-vl-7b-chat --local-dir ./models

通过加载DeepSeek-7B-chat 模型完成微调数据的初始化,以保证微调时数据的一致性。

# 加载分词器
tokenizer = AutoTokenizer.from_pretrained('./deepseek-ai/deepseek-llm-7b-chat/', use_fast=False, trust_remote_code=True)
tokenizer.padding_side = 'right' # padding在右边

'''
Lora训练的数据是需要经过格式化、编码之后再输入给模型进行训练的,如果是熟悉Pytorch模型训练流程的同学会知道,
我们一般需要将输入文本编码为input_ids,将输出文本编码为labels,编码之后的结果都是多维的向量。
'''

设置lora相关的参数

config = LoraConfig(
    task_type=TaskType.CAUSAL_LM, # 模型类型
    # 需要训练的模型层的名字,主要就是attention部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
    inference_mode=False, # False:训练模式 True:推理模式
    r=8, # Lora 秩
    lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理
    lora_dropout=0.01
)
各模块含义

这些名称对应 Transformer 模型中的关键投影层(Projection Layers):

  • q_projk_projv_proj:
    自注意力机制中的 查询(Query)、键(Key)、值(Value) 的投影矩阵,用于生成注意力权重。

  • o_proj:
    自注意力机制的 输出投影矩阵,将注意力计算结果映射回原始维度。

  • gate_projup_projdown_proj:
    Transformer 中 MLP 层(多层感知机)的投影矩阵:

    • gate_proj: 门控投影(用于激活函数前的门控控制,如 SwiGLU)。

    • up_proj 和 down_proj: 上下投影矩阵(用于特征维度的升维和降维)。


2. 为什么选择这些层?

这些层是模型的核心计算单元,对模型行为影响显著:

  • 注意力层:控制信息交互(如关注哪些词);

  • MLP 层:负责非线性特征变换。
    对它们进行微调,能以较少参数高效调整模型行为。


3. 底层原理

其中:

  • BA是低秩适配器,仅训练 A和 B;

  • 原始权重 W 冻结不更新,避免破坏预训练知识。

常见配置策略

1. 选择哪些层?
  • 通用场景:覆盖所有注意力层 (q_projk_projv_projo_proj) 和 MLP 层 (gate_projup_projdown_proj)。

  • 轻量化微调:仅选择注意力层(减少参数量)。

  • 任务相关:根据任务特性调整(如代码生成任务可能更关注 MLP 层)。

2. 不同模型的层名差异
  • Llama、Mistral: 使用 q_projk_projv_projo_proj 等命名。

  • GPT-2: 可能命名为 c_attn(合并 Q/K/V 投影)或 c_proj(输出投影)。

  • BERT: 通常为 querykeyvaluedense

自定义 TrainingArguments 参数这里就简单说几个常用的。

output_dir:模型的输出路径
per_device_train_batch_size:顾名思义 batch_size
gradient_accumulation_steps: 梯度累加,如果你的显存比较小,那可以把 batch_size 设置小一点,梯度累加增大一些。
logging_steps:多少步,输出一次log
num_train_epochs:顾名思义 epoch
fp16=True, # 开启半精度浮点数训练,减少显存使用
save_total_limit=1, # 限制保存的检查点数量,节省磁盘空间
gradient_checkpointing:梯度检查,这个一旦开启,模型就必须执行model.enable_input_require_grads()

配置如下

args = TrainingArguments(
    output_dir="./output/DeepSeek_full",
    per_device_train_batch_size=8,  # 每个设备上的 batch size
    gradient_accumulation_steps=2,  # 梯度累积步数,减少显存占用
    logging_steps=10, # 记录日志的步数
    num_train_epochs=3,  # 训练轮数
    save_steps=100,  # 保存检查点的步数
    learning_rate=1e-4, # 学习率
    fp16=True,  # 开启半精度浮点数训练,减少显存使用
    save_total_limit=1,  # 限制保存的检查点数量,节省磁盘空间
    save_on_each_node=True,
    gradient_checkpointing=True
    #logging_dir="./logs"  # 设置日志文件夹
)

deepseek 微调训练代码

# -*- coding: utf-8 -*-

from deepseek_vl.models import MultiModalityCausalLM
from peft import LoraConfig, TaskType, get_peft_model
from tokenizers import Tokenizer
from transformers import Trainer, TrainingArguments, AutoModelForCausalLM, GenerationConfig, \
    DataCollatorForSeq2Seq

from tokenizer_text import get_tokenized_id

tokenizer = Tokenizer.from_file("./models/tokenizer.json")
# tokenizer = AutoTokenizer.from_pretrained('./models/', use_fast=False, trust_remote_code=True)
# tokenizer.padding_side = 'right' # padding在右边

model: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained('./models/', trust_remote_code=True)
print('model', model)
# model = AutoModelForCausalLM.from_pretrained('./models/', trust_remote_code=True, torch_dtype=torch.half, device_map="auto")
#model.generation_config = GenerationConfig.from_pretrained('./models/')
#model.generation_config.pad_token_id = model.generation_config.eos_token_id

# 开启梯度
#model.enable_input_require_grads()
config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,  # 任务类型,常用于因果语言模型
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
    inference_mode=False,  # 训练模式
    r=8,  # LoRA 矩阵的秩,控制训练参数量,常用值为 4 或 8
    lora_alpha=32,  # Lora alaph,具体作用参见 Lora 原理:控制更新幅度的超参数
    lora_dropout=0.1  # Dropout 比例,防止过拟合
)

model = get_peft_model(model, config)

# 确保所有需要的参数启用梯度
for name, param in model.named_parameters():
   if param.requires_grad:
       print(f"Parameter {name} is trainable.")
   else:
       print(f"Parameter {name} is not trainable will set.")
       param.requires_grad = True
       
'''
自定义 TrainingArguments 参数
TrainingArguments这个类的源码也介绍了每个参数的具体作用,当然大家可以来自行探索,这里就简单说几个常用的。
output_dir:模型的输出路径
per_device_train_batch_size:顾名思义 batch_size
gradient_accumulation_steps: 梯度累加,如果你的显存比较小,那可以把 batch_size 设置小一点,梯度累加增大一些。
logging_steps:多少步,输出一次log
num_train_epochs:顾名思义 epoch
fp16=True,  # 开启半精度浮点数训练,减少显存使用
save_total_limit=1,  # 限制保存的检查点数量,节省磁盘空间
gradient_checkpointing:梯度检查,这个一旦开启,模型就必须执行model.enable_input_require_grads()
'''

args = TrainingArguments(
    output_dir="./output/DeepSeek_full",
    per_device_train_batch_size=8,  # 每个设备上的 batch size
    gradient_accumulation_steps=2,  # 梯度累积步数,减少显存占用
    logging_steps=10,  # 记录日志的步数
    num_train_epochs=3,  # 训练轮数
    save_steps=100,  # 保存检查点的步数
    learning_rate=1e-4,  # 学习率
    fp16=True,  # 开启半精度浮点数训练,减少显存使用
    save_total_limit=1,  # 限制保存的检查点数量,节省磁盘空间
    save_on_each_node=True,
    gradient_checkpointing=True
    # logging_dir="./logs"  # 设置日志文件夹
)

trainer = Trainer(
    model=model,
    args=args,
    train_dataset=get_tokenized_id('./data.json'),
    data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)

trainer.train()

# 直接合并模型开始。。。。。
# 将 adapter 合并进模型(去除 adapter 依赖)
model = model.merge_and_unload()
model.save_pretrained("./output/DeepSeek_full")
tokenizer.save_pretrained("./output/DeepSeek_full")

# 直接合并模型结束。。。。。

text = "现在你要扮演我碰到一位神秘的算命大师, 你是谁?今天我的事业运道如何?"

inputs = tokenizer(f"User: {text}\n\n", return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)

result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)

上面用到的tokenizer 相关代码

import tokenizer
import pandas as pd
from datasets import Dataset

from transformers import AutoTokenizer

# 加载分词器
tokenizer = AutoTokenizer.from_pretrained('./deepseek-llm-7b/', use_fast=False, trust_remote_code=True)
tokenizer.padding_side = 'right' # padding在右边

'''
Lora训练的数据是需要经过格式化、编码之后再输入给模型进行训练的,如果是熟悉Pytorch模型训练流程的同学会知道,
我们一般需要将输入文本编码为input_ids,将输出文本编码为labels,编码之后的结果都是多维的向量。
'''


def process_func(example):
  MAX_LENGTH = 384  # Llama分词器会将一个中文字切分为多个token,因此需要放开一些最大长度,保证数据的完整性
  input_ids, attention_mask, labels = [], [], []
  instruction = tokenizer(f"User: {example['instruction'] + example['input']}\n\n",
                          add_special_tokens=False)  # add_special_tokens 不在开头加 special_tokens
  response = tokenizer(f"Assistant: {example['output']}<|end▁of▁sentence|>", add_special_tokens=False)
  input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
  attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1]  # 因为eos token咱们也是要关注的所以 补充为1
  labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]
  if len(input_ids) > MAX_LENGTH:  # 做一个截断
    input_ids = input_ids[:MAX_LENGTH]
    attention_mask = attention_mask[:MAX_LENGTH]
    labels = labels[:MAX_LENGTH]
  return {
    "input_ids": input_ids,
    "attention_mask": attention_mask,
    "labels": labels
  }

def get_tokenized_id(json_file):
  df = pd.read_json(json_file)
  ds = Dataset.from_pandas(df)

  # 处理数据集
  tokenized_id = ds.map(process_func, remove_columns=ds.column_names)
  # print(tokenized_id)

  return tokenized_id

由于deepseek-v1是多模态模型,需要安装deepseek_vl 模块

git clone https://github.com/deepseek-ai/DeepSeek-VL
cd DeepSeek-VL

pip install -e .

加载模型时转为model: MultiModalityCausalLM,打印下模型结构

MultiModalityCausalLM(
  (vision_model): HybridVisionTower(
    (vision_tower_high): CLIPVisionTower(
      (vision_tower): ImageEncoderViT(
        (patch_embed): PatchEmbed(
          (proj): Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))
        )
        (blocks): ModuleList(
          (0-11): 12 x Block(
            (norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=768, out_features=2304, bias=True)
              (proj): Linear(in_features=768, out_features=768, bias=True)
            )
            (norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            (mlp): MLPBlock(
              (lin1): Linear(in_features=768, out_features=3072, bias=True)
              (lin2): Linear(in_features=3072, out_features=768, bias=True)
              (act): GELU(approximate='none')
            )
          )
        )
        (neck): Sequential(
          (0): Conv2d(768, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (1): LayerNorm2d()
          (2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (3): LayerNorm2d()
        )
        (downsamples): Sequential(
          (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (1): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        )
        (neck_hd): Sequential(
          (0): Conv2d(768, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (1): LayerNorm2d()
          (2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (3): LayerNorm2d()
        )
      )
      (image_norm): Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])
    )
    (vision_tower_low): CLIPVisionTower(
      (vision_tower): VisionTransformer(
        (patch_embed): PatchEmbed(
          (proj): Conv2d(3, 1024, kernel_size=(16, 16), stride=(16, 16))
          (norm): Identity()
        )
        (pos_drop): Dropout(p=0.0, inplace=False)
        (patch_drop): Identity()
        (norm_pre): Identity()
        (blocks): Sequential(
          (0): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (1): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (2): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (3): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (4): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (5): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (6): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (7): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (8): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (9): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (10): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (11): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (12): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (13): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (14): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (15): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (16): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (17): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (18): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (19): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (20): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (21): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (22): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (23): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
        )
        (norm): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
        (attn_pool): AttentionPoolLatent(
          (q): Linear(in_features=1024, out_features=1024, bias=True)
          (kv): Linear(in_features=1024, out_features=2048, bias=True)
          (q_norm): Identity()
          (k_norm): Identity()
          (proj): Linear(in_features=1024, out_features=1024, bias=True)
          (proj_drop): Dropout(p=0.0, inplace=False)
          (norm): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
          (mlp): Mlp(
            (fc1): Linear(in_features=1024, out_features=4096, bias=True)
            (act): GELU(approximate='none')
            (drop1): Dropout(p=0.0, inplace=False)
            (norm): Identity()
            (fc2): Linear(in_features=4096, out_features=1024, bias=True)
            (drop2): Dropout(p=0.0, inplace=False)
          )
        )
        (fc_norm): Identity()
        (head_drop): Dropout(p=0.0, inplace=False)
        (head): Identity()
      )
      (image_norm): Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    )
    (high_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
    (low_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
    (resize): Resize(size=384, interpolation=bilinear, max_size=None, antialias=True)
  )
  (aligner): MlpProjector(
    (high_up_proj): Linear(in_features=1024, out_features=2048, bias=True)
    (low_up_proj): Linear(in_features=1024, out_features=2048, bias=True)
    (layers): Sequential(
      (0): GELU(approximate='none')
      (1): Linear(in_features=4096, out_features=4096, bias=True)
    )
  )
  (language_model): LlamaForCausalLM(
    (model): LlamaModel(
      (embed_tokens): Embedding(102400, 4096)
      (layers): ModuleList(
        (0-29): 30 x LlamaDecoderLayer(
          (self_attn): LlamaAttention(
            (q_proj): Linear(in_features=4096, out_features=4096, bias=False)
            (k_proj): Linear(in_features=4096, out_features=4096, bias=False)
            (v_proj): Linear(in_features=4096, out_features=4096, bias=False)
            (o_proj): Linear(in_features=4096, out_features=4096, bias=False)
          )
          (mlp): LlamaMLP(
            (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)
            (up_proj): Linear(in_features=4096, out_features=11008, bias=False)
            (down_proj): Linear(in_features=11008, out_features=4096, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): LlamaRMSNorm((4096,), eps=1e-06)
          (post_attention_layernorm): LlamaRMSNorm((4096,), eps=1e-06)
        )
      )
      (norm): LlamaRMSNorm((4096,), eps=1e-06)
      (rotary_emb): LlamaRotaryEmbedding()
    )
    (lm_head): Linear(in_features=4096, out_features=102400, bias=False)
  )
)
 

开始训练,受限于资源单机单线程开启

accelerate launch --num_processes=1 --num_machines=1 train_deepseek.py

还是挺费显存的,试验受限于设备只能先进行到这里

附一段使用微调模型进行试验的代码(没有测试过)

# -*- coding: utf-8 -*-

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from deepseek_vl.models import MultiModalityCausalLM, VLChatProcessor


import warnings
warnings.filterwarnings("ignore", category=FutureWarning, module="torch.utils._pytree")

# 指定合并后的模型路径
merged_model_path = "./output/DeepSeek_full"

# 加载模型
# model = AutoModelForCausalLM.from_pretrained(merged_model_path, torch_dtype=torch.float16, device_map="auto")
model: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained('./models/', trust_remote_code=True)
if hasattr(model, 'tie_weights'):
    model.tie_weights()

tokenizer = AutoTokenizer.from_pretrained(merged_model_path)

# 使用模型生成文本示例
input_text = '''
###重要信息
 -你是一个善于洞察人心的算命大师,请直接以算命大师的角度回复,注意角色不要混乱,你是算命大师,你是算命大师,你是算命大师,你会积极对用户调侃,长度20字。

 User:测一下我今天的运势
 '''

inputs = tokenizer(input_text, return_tensors="pt").to("cuda")

# 生成
with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_new_tokens=50,  # 可调整生成长度
        do_sample=True,
        top_p=0.95,
        temperature=0.7,
        num_return_sequences=1
    )

# 解码生成的文本
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("生成的文本:", generated_text)


http://www.kler.cn/a/530976.html

相关文章:

  • ieee模版如何修改参考文献的格式以及多作者省略等
  • 八. Spring Boot2 整合连接 Redis(超详细剖析)
  • Python + Tkinter + pyttsx3实现的桌面版英语学习工具
  • 优选算法的灵动之章:双指针专题(一)
  • Java创建对象有几种方式?
  • wax到底是什么意思
  • 当前热门文生图大模型介绍与优缺点分析
  • Rust `struct`和 `enum`番外《哪吒、白蛇传?》
  • 嵌入式知识点总结 操作系统 专题提升(三)-并发与互斥
  • 使用React和Material-UI构建TODO应用的前端UI
  • 无人机飞行惯导系统技术详解
  • deepseek本地部署+结合思路
  • sql主从同步
  • Med-R2:基于循证医学的检索推理框架:提升大语言模型医疗问答能力的新方法
  • URL 和 URI 的区别
  • java命令详解
  • 二维前缀和:高效求解矩阵区域和问题
  • 【实战篇】Android安卓本地离线实现视频检测人脸
  • LabVIEW图片识别逆向建模系统
  • 嵌入式知识点总结 操作系统 专题提升(四)-上下文
  • Vue3学习笔记-条件渲染和列表渲染-3
  • WPS动画:使图形平移、围绕某个顶点旋转一定角度
  • [SAP ABAP] ABAP SQL跟踪工具
  • RabbitMQ快速上手及入门
  • 机器学习10
  • guava:基于TypeToken解析泛型类的类型变量(TypeVariable)的具体类型