【数据结构】栈与队列
栈
栈的概念及结构
栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。
压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。
出栈:栈的删除操作叫做出栈。出数据也在栈顶。
栈的实现
一般可以使用数组或链表,相对而言数组的结构实现更优一些,因为数组在尾上插入数据的代价比较小
用数组实现:
Stack.h
#pragma once
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <assert.h>
//#define N 10
//struct Stack {
// int a[N];
// int top;
//};
typedef int STDataType;
typedef struct Stack {
STDataType* a;
int top;
int capacity;
}ST;
void STInit(ST* ps);
void STDestroy(ST* ps);
void STPush(ST* ps, STDataType x);
void STPop(ST* ps);
int STSize(ST* ps);
bool STEmpty(ST* ps);
STDataType STTop(ST* ps);
Stack.c
#include "Stack.h"
void STInit(ST* ps) {
assert(ps);
ps->a = (STDataType*)malloc(sizeof(STDataType) * 4);
if (ps->a == NULL) {
perror("malloc fail");
return;
}
ps->capacity = 4;
//ps->top = -1;//top栈顶元素位置
ps->top = 0;//top栈顶元素下一个位置
}
void STDestroy(ST* ps) {
assert(ps);
free(ps->a);
ps->a = NULL;
ps->capacity = 0;
ps->top = 0;
}
void STPush(ST* ps, STDataType x) {
assert(ps);
if (ps->top == ps->capacity) {
STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * ps->capacity * 2);
if (ps->a == NULL) {
perror("malloc fail");
return;
}
ps->a = tmp;
ps->capacity *= 2;
}
ps->a[ps->top] = x;
ps->top++;
}
void STPop(ST* ps) {
assert(ps);
assert(!STEmpty(ps));
ps->top--;
}
int STSize(ST* ps) {
assert(ps);
return ps->top;
}
bool STEmpty(ST* ps) {
assert(ps);
return ps->top == 0;
}
STDataType STTop(ST* ps) {
assert(ps);
assert(!STEmpty(ps));
return ps->a[ps->top - 1];
}
Test.c
#pragma once
#include "Stack.h"
int main() {
ST st;
STInit(&st);
STPush(&st, 1);
STPush(&st, 2);
STPush(&st, 3);
STPush(&st, 4);
STPush(&st, 5);
//while (!STEmpty(&st)) {
while (st.top!=0) {
printf("%d ", STTop(&st));
STPop(&st);
}
STDestroy(&st);
return 0;
}
例1:
方法:
左括号入栈
右括号于出栈顶的那个左括号匹配
队列
队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出 FIFO(First In First Out)
入队列:进行插入操作的一端称为队尾
出队列:进行删除操作的一端称为队头
Queue.h
#pragma once
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <assert.h>
typedef int QDataType;
typedef struct QueueNode {
struct QueueNode* next;
QDataType data;
}QNode;
typedef struct Queue {
QNode* head;
QNode* tail;
int size;
}Queue;
void QueueInit(Queue* pq);
void QueueDestroy(Queue* pq);
void QueuePush(Queue* pq,QDataType x);//尾插
void QueuePop(Queue* pq);//头删
int QueueSize(Queue* pq);
bool QueueEmpty(Queue* pq);
QDataType QueueFront(Queue* pq);//队头的数据
QDataType QueueBack(Queue* pq);//队尾的数据
Queue.c
#include "Queue.h"
void QueueInit(Queue* pq) {
assert(pq);
pq->head = pq->tail = NULL;
pq->size = 0;
}
void QueueDestroy(Queue* pq) {
assert(pq);
QNode* cur = pq->head;
while (cur) {
QNode* next = cur->next;
free(cur);
cur = next;
}
}
void QueuePush(Queue* pq, QDataType x) {
QNode* newnode = (QNode*)malloc(sizeof(QNode));
newnode -> data = x;
newnode->next = NULL;
if (newnode == NULL) {
perror("malloc fail");
return;
}
if (pq->head == NULL) {
assert(pq->tail == NULL);
pq->head = pq->tail = newnode;
}
else {
pq->tail->next = newnode;
pq->tail = newnode;
}
pq->size++;
}
void QueuePop(Queue* pq) {
assert(pq);
assert(pq->head != NULL);
/*QNode* next = pq->head->next;
free(pq->head);
pq->head = next;
if (pq->head == NULL) {
pq->tail = NULL;
}*/
if (pq->head->next == NULL) {
free(pq->head);
pq->head = pq->tail = NULL;
}
else {
QNode* next = pq->head->next;
free(pq->head);
pq->head = next;
}
pq->size--;
}
int QueueSize(Queue* pq) {
assert(pq);
return pq->size;
}
bool QueueEmpty(Queue* pq) {
assert(pq);
return pq->size == 0;
}
QDataType QueueFront(Queue* pq) {
assert(pq);
assert(!QueueEmpty(pq));
return pq->head->data;
}
QDataType QueueBack(Queue* pq) {
assert(pq);
assert(!QueueEmpty(pq));
return pq->tail->data;
}
Test.c
#pragma once
#include "Queue.h"
int main() {
Queue q;
QueueInit(&q);
QueuePush(&q, 1);
QueuePush(&q, 2);
QueuePush(&q, 3);
QueuePush(&q, 4);
QueuePush(&q, 5);
while (!QueueEmpty(&q)) {
printf("%d ", QueueFront(&q));
QueuePop(&q);
}
printf("\n");
QueueDestroy(&q);
return 0;
}
例2:
方法:
保持一个队列为空,一个队列存数据
出栈,把前面数据导入空队列
typedef int QDataType;
typedef struct QueueNode {
struct QueueNode* next;
QDataType data;
}QNode;
typedef struct Queue {
QNode* head;
QNode* tail;
int size;
}Queue;
void QueueInit(Queue* pq);
void QueueDestroy(Queue* pq);
void QueuePush(Queue* pq,QDataType x);
void QueuePop(Queue* pq);
int QueueSize(Queue* pq);
bool QueueEmpty(Queue* pq);
QDataType QueueFront(Queue* pq);
QDataType QueueBack(Queue* pq);
void QueueInit(Queue* pq) {
assert(pq);
pq->head = pq->tail = NULL;
pq->size = 0;
}
void QueueDestroy(Queue* pq) {
assert(pq);
QNode* cur = pq->head;
while (cur) {
QNode* next = cur->next;
free(cur);
cur = next;
}
}
void QueuePush(Queue* pq, QDataType x) {
QNode* newnode = (QNode*)malloc(sizeof(QNode));
if (newnode == NULL) {
perror("malloc fail");
return;
}
newnode -> data = x;
newnode->next = NULL;
if (pq->head == NULL) {
assert(pq->tail == NULL);
pq->head = pq->tail = newnode;
}
else {
pq->tail->next = newnode;
pq->tail = newnode;
}
pq->size++;
}
void QueuePop(Queue* pq) {
assert(pq);
assert(pq->head != NULL);
if (pq->head->next == NULL) {
free(pq->head);
pq->head = pq->tail = NULL;
}
else {
QNode* next = pq->head->next;
free(pq->head);
pq->head = next;
}
pq->size--;
}
int QueueSize(Queue* pq) {
assert(pq);
return pq->size;
}
bool QueueEmpty(Queue* pq) {
assert(pq);
return pq->size == 0;
}
QDataType QueueFront(Queue* pq) {
assert(pq);
assert(!QueueEmpty(pq));
return pq->head->data;
}
QDataType QueueBack(Queue* pq) {
assert(pq);
assert(!QueueEmpty(pq));
return pq->tail->data;
}
typedef struct {
Queue q1;
Queue q2;
} MyStack;
MyStack* myStackCreate() {
MyStack* pst=(MyStack*)malloc(sizeof(MyStack));
if(pst==NULL){
perror("malloc fail");
return NULL;
}
QueueInit(&pst->q1);
QueueInit(&pst->q2);
return pst;
}
void myStackPush(MyStack* obj, int x) {
if(!QueueEmpty(&obj->q1)){
QueuePush(&obj->q1,x);
}else
QueuePush(&obj->q2,x);
}
int myStackPop(MyStack* obj) {
Queue* emptyQ=&obj->q1;
Queue* nonemptyQ=&obj->q2;
if(!QueueEmpty(emptyQ)){
emptyQ=&obj->q2;
nonemptyQ=&obj->q1;
}
while(QueueSize(nonemptyQ)>1){
QueuePush(emptyQ,QueueFront(nonemptyQ));
QueuePop(nonemptyQ);
}
int top=QueueFront(nonemptyQ);
QueuePop(nonemptyQ);
return top;
}
int myStackTop(MyStack* obj) {
if(!QueueEmpty(&obj->q1))
return QueueBack(&obj->q1);
else
return QueueBack(&obj->q2);
}
bool myStackEmpty(MyStack* obj) {
return QueueEmpty(&obj->q1)&&QueueEmpty(&obj->q2);
}
void myStackFree(MyStack* obj) {
QueueDestroy(&obj->q1);
QueueDestroy(&obj->q2);
free(obj);
}
/**
* Your MyStack struct will be instantiated and called as such:
* MyStack* obj = myStackCreate();
* myStackPush(obj, x);
* int param_2 = myStackPop(obj);
* int param_3 = myStackTop(obj);
* bool param_4 = myStackEmpty(obj);
* myStackFree(obj);
*/
例3
分为两个栈,一个进数据pushst,一个出数据popst
当需要出数据时,分为两种情况,
1,popst中没有数据时,需要将pushst的数据导入popst中,此时popst中数据顺序与pushst中相反
正常出数据即可
2.popst中有数据时,正常出数据即可
#pragma once
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <assert.h>
typedef int STDataType;
typedef struct Stack {
int* a;
int top;
int capacity;
}ST;
void STInit(ST* ps);
void STDestroy(ST* ps);
void STPush(ST* ps, STDataType x);
void STPop(ST* ps);
int STSize(ST* ps);
bool STEmpty(ST* ps);
STDataType STTop(ST* ps);
void STInit(ST* ps) {
assert(ps);
ps->a = (STDataType*)malloc(sizeof(STDataType) * 4);
if (ps->a == NULL) {
perror("malloc fail");
return;
}
ps->capacity = 4;
ps->top = 0;
}
void STDestroy(ST* ps) {
assert(ps);
free(ps->a);
ps->a = NULL;
ps->capacity = 0;
ps->top = 0;
}
void STPush(ST* ps, STDataType x) {
assert(ps);
if (ps->top == ps->capacity) {
STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * ps->capacity * 2);
if (ps->a == NULL) {
perror("malloc fail");
return;
}
ps->a = tmp;
ps->capacity *= 2;
}
ps->a[ps->top] = x;
ps->top++;
}
void STPop(ST* ps) {
assert(ps);
assert(!STEmpty(ps));
ps->top--;
}
int STSize(ST* ps) {
assert(ps);
return ps->top;
}
bool STEmpty(ST* ps) {
assert(ps);
return ps->top == 0;
}
STDataType STTop(ST* ps) {
assert(ps);
assert(!STEmpty(ps));
return ps->a[ps->top - 1];
}
typedef struct {
ST pushst;
ST popst;
} MyQueue;
MyQueue* myQueueCreate() {
MyQueue* obj=(MyQueue*)malloc(sizeof(MyQueue));
if(obj==NULL){
perror("malloc fail");
return NULL;
}
STInit(&obj->pushst);
STInit(&obj->popst);
return obj;
}
void myQueuePush(MyQueue* obj, int x) {
STPush(&obj->pushst,x);
}
int myQueuePeek(MyQueue* obj) {
if(STEmpty(&obj->popst)){
while(!STEmpty(&obj->pushst)){
STPush(&obj->popst,STTop(&obj->pushst));
STPop(&obj->pushst);
}
}
return STTop(&obj->popst);
}
int myQueuePop(MyQueue* obj) {
int front=myQueuePeek(obj);
STPop(&obj->popst);
return front;
}
bool myQueueEmpty(MyQueue* obj) {
return STEmpty(&obj->pushst)&&STEmpty(&obj->popst);
}
void myQueueFree(MyQueue* obj) {
STDestroy(&obj->pushst);
STDestroy(&obj->popst);
free(obj);
}
/**
* Your MyQueue struct will be instantiated and called as such:
* MyQueue* obj = myQueueCreate();
* myQueuePush(obj, x);
* int param_2 = myQueuePop(obj);
* int param_3 = myQueuePeek(obj);
* bool param_4 = myQueueEmpty(obj);
* myQueueFree(obj);
*/
例4:
typedef struct {
int* a;
int front;
int rear;
int k;
} MyCircularQueue;
MyCircularQueue* myCircularQueueCreate(int k) {
MyCircularQueue* obj=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
obj->front=obj->rear=0;
obj->a=(int*)malloc(sizeof(int)*(k+1));
obj->k=k;
return obj;
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
return obj->front==obj->rear;
}
bool myCircularQueueIsFull(MyCircularQueue* obj) {
return (obj->rear+1)%(obj->k+1)==obj->front;
}
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
if(myCircularQueueIsFull(obj))
return false;
obj->a[obj->rear++]=value;
obj->rear%=(obj->k+1);
return true;
}
bool myCircularQueueDeQueue(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
return false;
obj->front++;
obj->front%=(obj->k+1);
return true;
}
int myCircularQueueFront(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
return -1;
else
return obj->a[obj->front];
}
int myCircularQueueRear(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
return -1;
else{
int x=obj->rear==0?obj->k:obj->rear-1;
return obj->a[x];
}
//return obj->a[(obj->rear-1+obj->k+1)%(obj->k+1)];
}
void myCircularQueueFree(MyCircularQueue* obj) {
free(obj->a);
free(obj);
}
/**
* Your MyCircularQueue struct will be instantiated and called as such:
* MyCircularQueue* obj = myCircularQueueCreate(k);
* bool param_1 = myCircularQueueEnQueue(obj, value);
* bool param_2 = myCircularQueueDeQueue(obj);
* int param_3 = myCircularQueueFront(obj);
* int param_4 = myCircularQueueRear(obj);
* bool param_5 = myCircularQueueIsEmpty(obj);
* bool param_6 = myCircularQueueIsFull(obj);
* myCircularQueueFree(obj);
*/