DeepSeek 与 ChatGPT 对比分析
一、技术背景与研发团队
ChatGPT 由 OpenAI 开发,自 2015 年 OpenAI 成立以来,经过多年的技术积累和迭代,从 GPT-1 到 GPT-4o,每一次升级都带来了技术上的突破。OpenAI 拥有雄厚的技术实力和海量的数据、强大的算力支持,与微软的合作更是为其提供了坚实的硬件基础,耗费上万张英伟达 A100 芯片打造超算平台以保障 ChatGPT 的运行。
DeepSeek 则是由中国本土 AI 公司深度求索自主研发 。其研发团队 “小而精”,人均产出模型代码量是行业平均的 6 倍,这使得团队在决策和创新方面更为灵活,能够快速响应技术发展趋势,专注于打造适合中文语境和中国用户需求的大语言模型。
二、模型规模与训练成本
从模型参数量来看,DeepSeek 部分报道提及 DeepSeek - v3 拥有 370 亿激活参数,也有以 671b 作为整体参考的情况;而根据南加州大学研究推测,ChatGPT 所基于的 GPT-3.5-turbo 的参数规模约 7b 。在训练成本上,两者差异明显,DeepSeek - v3 训练成本仅 557.6 万美元,显著低于 ChatGPT,例如 GPT-4 训练成本高达约 1 亿美元,虽然 GPT-3.5-turbo 的训练成本未具体提及,但预计不会低于 GPT-4。较低的训练成本意味着 DeepSeek 在资源利用效率上有独特优势,也可能为更多开发者和企业提供了使用门槛更低的选择。
三、功能特点
(一)推理能力
在推理能力方面,DeepSeek 在量化金融、半导体产业链分析、生物医药前沿等领域建立了专项知识图谱,这使得它在相关领域的推理任务准确率比 ChatGPT 高出 18%。在 2023 年 agieval 测评中,DeepSeek - r1 逻辑推理准确率达到 82.3%,尤其在逻辑推理和数学证明题处理方面表现出色。ChatGPT 虽然也具备强大的推理能力,但在特定领域知识图谱构建和推理任务准确率上稍逊一筹。不过,ChatGPT 在通用性推理和对广泛领域知识的综合运用上,依然有着出色的表现,能够为用户提供较为全面的推理思路和解释。
(二)语言处理
- 中文处理:DeepSeek 在中文处理上有着天然的优势,更符合中国人的语言习惯。无论是文言文翻译,还是对行业术语的精准理解,都表现尤为出色。它能够深入挖掘中文语境中的含义和文化内涵,生成的内容更加贴近中文表达习惯。而 ChatGPT 虽然也支持中文处理,但在理解和表达中文的细微差别上,与 DeepSeek 相比不够精准,有时生成的中文内容可能存在语法或语义上的小瑕疵。
- 多语言处理:ChatGPT 基于 OpenAI 在全球的影响力和大量的多语言数据训练,在多语言处理方面较为全面,能够支持多种语言之间的交互和翻译任务,在国际交流场景中有广泛应用。DeepSeek 目前则主要聚焦于中文领域的深耕,在多语言覆盖的广度上不如 ChatGPT,但随着技术发展,未来也可能拓展更多语言能力。
(三)文化与理论
DeepSeek 在文化批判方面表现较强,更适合处理中文互联网语境中的文化批判任务,在理论隐喻方面也有出色表现,能够处理高概念抽象任务,这与它对中文文化和理论体系的深入学习和理解分不开。ChatGPT 在文化批判和理论隐喻方面相对较弱,由于其训练数据和研发背景,可能更偏向于西方中心主义和实用主义,在处理东方文化和一些抽象理论时,可能无法像 DeepSeek 那样深入。
四、应用场景
(一)DeepSeek
由于其在特定领域知识图谱和中文处理的优势,在国内金融、科研、教育等领域有很好的应用前景。例如在量化金融领域,帮助分析师进行更精准的市场分析和投资策略制定;在科研领域,辅助科研人员快速检索和理解专业文献;在教育领域,能够为学生提供更符合中文学习习惯的知识解答和辅导。近期,随着 DeepSeek 爆火全网,不少网友在社交媒体平台发帖称,已经开始用 DeepSeek 选股了,这也体现了它在金融应用场景的潜力。
(二)ChatGPT
ChatGPT 在代码生成、创意写作等方面表现突出,其在国际市场上应用广泛。在软件开发中,能够帮助开发者快速生成代码框架和解决编程问题;在创意写作方面,无论是小说创作、广告文案撰写还是新闻报道,都能提供丰富的创意和思路。同时,其与必应搜索引擎和 Edge 浏览器的整合,也使其在信息检索和智能问答方面有广泛应用,用户可以通过浏览器获得更智能的搜索结果和交互体验。
五、数据处理与更新
DeepSeek 训练数据更新至 2023 年第四季度,能更好地捕捉新兴科技趋势,及时将最新的知识和信息融入模型。而 ChatGPT 数据更新频率和时效性未具体提及,但 OpenAI 通常会定期更新其模型以包含最新的数据和知识,不过在更新的及时性上,可能不如明确提及更新时间的 DeepSeek。另外,ChatGPT 在服务开放给公众后,几亿用户为其贡献数据,进一步训练和微调使得它更符合用户需求;DeepSeek 虽没有如此大规模的用户数据反馈,但通过其对特定领域数据的深度挖掘和整理,在专业领域的数据质量上有一定优势。
六、开源与生态
DeepSeek 所有模型均开源,这吸引了全球开发者参与构建应用,形成了强大的技术社区影响力。开发者可以根据自己的需求对模型进行优化和改进,推动了技术的快速发展和创新。ChatGPT 虽然 OpenAI 也提供了 API 接口供开发者使用,但其模型本身并未开源,这在一定程度上限制了部分开发者的参与和贡献,不过其 API 的广泛应用也构建了庞大的应用生态,许多企业和开发者基于其 API 开发出各种智能应用。