当前位置: 首页 > article >正文

工业相机,镜头的选型及实战

工业相机和镜头的选型是机器视觉系统中的关键步骤,选型不当可能导致成像质量差或系统性能不达标。(用于个人的学习和记录)

一、工业相机选型方法

  1. 确定分辨率
    分辨率需求:根据被测物体的尺寸和检测精度要求计算所需分辨率。

公式:分辨率(像素) = 视野范围(mm) / 检测精度(mm/像素)

例如:视野范围为100mm,检测精度为0.1mm,则分辨率至少为1000像素。

  1. 选择传感器尺寸
    传感器尺寸影响视野和镜头选型,常见尺寸有1/2.5英寸、1/1.8英寸、2/3英寸等。
    传感器尺寸越大,成像质量越好,但成本也越高。
    1/2.5英寸:对角线长度为10.16mm,宽7.182mm,高5.760mm
    1/1.8英寸:对角线长度为14.111mm,宽8.933mm,高7.176mm
    2/3英寸:对角线长度为16.933mm,宽11.000mm,高8.800mm

1/2.5英寸传感器:适合对体积和成本有要求的场景,但成像质量相对较低。
1/1.8英寸传感器:成像质量较好,适合中高端消费级相机和部分工业相机。
2/3英寸传感器:感光面积大,成像质量高,适合专业级工业相机和高端相机

  1. 确定帧率
    根据检测速度需求选择相机的帧率。

静态检测:低帧率(如10fps以下)。

动态检测:高帧率(如100fps以上)。

  1. 选择接口类型
    USB:通用性强,适合中小型系统。

GigE:适合长距离传输(最长100米)。

Camera Link:高速传输,适合高分辨率、高帧率场景。

CoaXPress:超高带宽,适合高速、高分辨率应用。

  1. 确定黑白/彩色
    黑白相机:适合检测尺寸、形状、缺陷等。

彩色相机:适合颜色识别、表面检测等。

  1. 其他参数
    动态范围:高动态范围适合明暗对比强烈的场景。

曝光时间:短曝光时间适合高速运动物体。

信噪比(SNR):信噪比越高,图像质量越好。

二、镜头选型方法

  1. 确定焦距
    焦距决定视野和工作距离。

公式:焦距(f) = 工作距离(WD) × 传感器尺寸(H或V) / 视野范围(H或V)

例如:工作距离为500mm,传感器尺寸为4.8mm(高),视野范围为100mm,则焦距 ≈ 500 × 4.8 / 100 = 24mm。

  1. 选择接口类型
    C接口:适合小传感器尺寸(如1/2英寸以下)。

CS接口:适合更小的传感器尺寸。

F接口:适合大传感器尺寸(如全画幅)。

  1. 确定光圈
    光圈影响进光量和景深。

大光圈(如F1.4):适合低光照环境,但景深较浅。

小光圈(如F8):适合高光照环境,景深较大。

  1. 选择放大倍率
    放大倍率(M) = 传感器尺寸 / 视野范围。

高放大倍率适合小物体检测,低放大倍率适合大视野检测。

  1. 考虑畸变和分辨率
    畸变:选择低畸变镜头,尤其是边缘视野要求高时。

分辨率:镜头分辨率应匹配相机分辨率,避免分辨率不足。

  1. 其他参数
    工作距离:镜头与物体之间的距离需满足实际需求。

景深:景深越大,清晰成像的范围越大。

环境适应性:如防尘、防水、耐高温等特性。

三、举例分析

  1. 拍摄6.4mm×6.4mm物体且检测精度达到1μm的要求。

物体尺寸为6.4mm×6.4mm,检测精度为1μm(即0.001mm)。根据公式:
在这里插入图片描述
为了确保足够的冗余和边缘像素,通常需要将所需像素数乘以3-4倍。因此,相机的分辨率应至少为:
6400×3=19200像素

  1. 镜头选型
    计算放大倍率:
    假设相机传感器尺寸为2/3英寸(8.8mm×6.6mm),根据公式:
    在这里插入图片描述
    镜头焦距计算:
    假设工作距离为100mm,根据公式
    在这里插入图片描述

http://www.kler.cn/a/536356.html

相关文章:

  • DeepSeek LLM(初代)阅读报告
  • 【大数据技术】搭建完全分布式高可用大数据集群(Scala+Spark)
  • mac 安装 dotnet 环境
  • 【漫画机器学习】083.安斯库姆四重奏(Anscombe‘s Quartet)
  • 如何安装PHP依赖库 更新2025.2.3
  • 大语言模型轻量化:知识蒸馏的范式迁移与工程实践
  • 机器学习在癌症分子亚型分类中的应用
  • 组合(力扣77)
  • 网站快速收录:如何优化网站专题页面?
  • 如何依据使用场景挑选合适的3D扫描仪?
  • 流媒体技术原理
  • 4-kafka消费端之分区分配策略
  • SAP FICO 部分付款付款起算日期、销售订单、行取原始凭证增强
  • docker数据持久化的意义
  • 【10.6】队列-解从仓库到码头运输箱子
  • Python教学安排
  • AUTOSAR汽车电子嵌入式编程精讲300篇-基于FPGA的CAN FD汽车总线数据交互系统设计
  • 【R语言】plyr包和dplyr包
  • Elasticsearch 生产集群部署终极方案
  • vscode卡住---回退版本解决
  • Charles 远端代理到本地:Map Remote + http-server
  • 基于Simulink的步进电机控制系统仿真
  • 【前端基础】深入理解ES6新特性
  • systemverilog的genvar
  • 时序数据库:Influxdb详解
  • 英特尔至强服务器CPU销量创14年新低,AMD取得进展