当前位置: 首页 > article >正文

基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2022a/matlab2024b

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

..............................................................................
X       = woa_idx;
%设置网络参数 
%卷积核
Nfilter = floor(X(1));%8;  
%卷积核大小
Sfilter = floor(X(2));%5;     
%丢失因子
drops   = X(3);%0.025;  
%残差块
Nblocks = floor(X(4));%4;       
%特征个数
Nfeats  = Dims;      

%设置网络参数 
lgraph=func_layers2(Dims,Dimso,X);

 

%参数设置
options = trainingOptions("adam",...          
          'InitialLearnRate',X(5),...        
          'MaxEpochs',500,...               
          'miniBatchSize',2,...               
          'Plots','training-progress',...     
          'Verbose', false);                     


%训练
[net,INFO] = trainNetwork(Ptrain_reshape, Ttrain_reshape, lgraph, options);

Rerr = INFO.TrainingRMSE;
Rlos = INFO.TrainingLoss;

 
figure
subplot(211)
plot(Rerr)
xlabel('迭代次数')
ylabel('RMSE')
grid on
    
subplot(212)
plot(Rlos)
xlabel('迭代次数')
ylabel('LOSS')
grid on



%仿真预测
tmps   = predict(net, Ptest_reshape ); 
T_pred = double(tmps{1, 1});
%反归一化
T_pred = mapminmax('reverse', T_pred, vmax2);
ERR    = mean(abs(T_test-T_pred));
ERR

figure
plot(T_test, 'b','LineWidth', 1)
hold on
plot(T_pred, 'r','LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

figure
plotregression(T_test,T_pred,['回归']);

save R2.mat Rerr Rlos T_test T_pred ERR 
203

4.算法理论概述

        TCN 是一种专门为处理时间序列数据设计的卷积神经网络。它以卷积层为核心组件,通过扩张卷积(Dilated Convolution)来增加感受野,从而捕捉时间序列中的长距离依赖关系。与传统的循环神经网络(如 RNN、LSTM)不同,TCN 的卷积操作可以并行计算,大大提高了训练效率。在 TCN 中,输入的时间序列数据依次经过多个卷积层、批归一化层(Batch Normalization)和激活函数层(如 ReLU)进行特征提取和转换。这些层的组合能够自动学习时间序列中的复杂模式和趋势。

       经过多层卷积和处理后,TCN 的输出层将生成预测结果。对于时间序列预测任务,输出层的维度通常与预测的时间步长相对应。

因果卷积

残差连接

适应度函数

       适应度函数用于评估每个染色体(即一组 TCN 超参数设置)的优劣。在时间序列预测任务中,通常以预测误差作为适应度函数的基础。例如,可以使用均方误差(MSE)作为适应度函数的一部分:

算法流程

        WOA即Whale Optimization Algorithm(鲸鱼优化算法),是一种受自然界鲸鱼捕食行为启发的生物启发式优化算法,由Eslam Mohamed于2016年提出,常用于解决各种连续优化问题,包括函数优化、机器学习参数调整、工程设计等领域中的复杂优化任务。

1.数据预处理:对时间序列数据进行归一化处理,使其取值范围在([0,1])之间。

2.初始化种群:随机生成一组种群,每个个体代表一组网络参数。

3.计算适应度值:对于每个个体,将其对应的网络参数代入TCN网络中,对训练数据进行预测,并计算预测结果与真实值之间的误差,作为该个体的适应度值。

4.更新个体信息。

5.重复步骤 3 和 4,直到满足停止条件(如达到最大迭代次数或适应度值小于某个阈值)。

6.输出最优网络参数:将全局最优位置对应的网络参数作为最优网络参数,代入TCN网络中,对测试数据进行预测,得到最终的预测结果。

5.算法完整程序工程

OOOOO

OOO

O


http://www.kler.cn/a/536666.html

相关文章:

  • GaussDB对象权限的注意事项
  • BFS算法——广度优先搜索,探索未知的旅程(下)
  • Redis - 全局ID生成器 RedisIdWorker
  • UE虚幻引擎No Google Play Store Key:No OBB found报错如何处理
  • [创业之路-286]:《产品开发管理-方法.流程.工具 》-1- IPD两个跨职能团队的组织
  • Windows 中学习Docker环境准备3、在Ubuntu中安装Docker
  • 【玩转 Postman 接口测试与开发2_019】第15章:利用 Postman 初探 API 性能测试(含实战截图)
  • FFmpeg使用GPU编解码,及在C++代码中实现FFmpeg使用GPU编解码
  • C# LINQ与集合类 数据操作
  • postgresql-15(yum安装教程)
  • 让文物“活”起来,以3D数字化技术传承文物历史文化!
  • [RabbitMQ] 常见面试题汇总 工作流程 消息可靠性 消息顺序性 幂等性 高级特性 延迟队列 仲裁队列 工作模式 消息积压 推拉模式
  • easyxor
  • 赛博算命之 ”梅花易数“ 的 “JAVA“ 实现 ——从玄学到科学的探索
  • element-ui rate 组件源码分享
  • zsh: command not found: pip
  • Android Studio:键值对存储sharedPreferences
  • unity视频在场景中的使用
  • APP广告变现如何优化广告填充率,提升变现收益?
  • Mysql知识梳理(数据库的锁梳理,Mysql优化)
  • 回溯算法中关于剪枝的一些应用
  • PHP PDO 教程
  • 【Elasticsearch】date range聚合
  • 安卓/ios脚本开发按键精灵经验小分享
  • .net一些知识点5
  • VMware下Linux和macOS安装VSCode一些总结