当前位置: 首页 > article >正文

kafka 3.5.0 raft协议安装

前言

最近做项目,需要使用kafka进行通信,且只能使用kafka,笔者没有测试集群,就自己搭建了kafka集群,实际上笔者在很早之前就搭建了,因为当时还是zookeeper(简称ZK)注册元数据,现在新版kafka(3.0.0开始)已经自带了元数据能力(使用raft协议)减少了kafka对zk的依赖性。笔者在查询资料发现,说jdk至少jdk11,实测jdk8也能运行,且并不需要网上说的3+4节点,3+3即可,当然理论上broker节点越多越好,但是元数据节点建议3、5个最合适,raft的过半一致性和容错性的综合取舍。

准备

准备kafka安装包:Apache Kafka

笔者使用的kafka 3.5.0和scala 2.13,采用3台虚拟机,当然容器也不是不行,注意持久化pv pvc和配置的管理(ip换成域名,dns的切换支持),中间件建议使用虚拟机,可以降低很多容错性。

jdk使用open jdk,配置java_home和path,以Ubuntu为例

 sudo apt install openjdk-8-jdk-headless

以macOS为例,创建一个ubuntu-server 最小安装的虚拟机(vmware,毕竟个人使用不要钱),然后安装openssh 和 openjdk,然后shutdown now

网络选择桥接,相当于一台“真实在”网络上的一台物理机

这样就得到了

192.168.0.108

192.168.0.107

192.168.0.106

3台虚拟机

步骤

先看kafka集群的架构图,实际上安装的过程就是架构图的执行过程

 

从图中可以看出已经没有zk的存在了,从kafka节点自己管理元数据,通过raft协议选主的方式。

1. kafka的准备

上传kafka安装包,必须是二进制安装包,不要源码包,编译比较麻烦,然后解压

tar -zxvf  kafka_2.13-3.5.0.gz

查看配置目录会发现

明显多了kraft的配置目录,那么如果使用kafka raft元数据中心,则需要修改kraft目录,启动时指定kraft目录的配置

2. 配置修改

raft协议实际上跟zk差不多,使用raft协议的中间件就太多了,但是本质上每个节点都需要一个唯一id,zk也是如此,所以kafka kraft就相当于集成的zk。

在kraft下的有3个文件文件,其中启动相关的是server.properties中

执行配置修改


# The role of this server. Setting this puts us in KRaft mode
process.roles=broker,controller

# The node id associated with this instance's roles
node.id=1

# The connect string for the controller quorum
controller.quorum.voters=1@localhost:9093

############################# Socket Server Settings #############################

# The address the socket server listens on.
# Combined nodes (i.e. those with `process.roles=broker,controller`) must list the controller listener here at a minimum.
# If the broker listener is not defined, the default listener will use a host name that is equal to the value of java.net.InetAddress.getCanonicalHostName(),
# with PLAINTEXT listener name, and port 9092.
#   FORMAT:
#     listeners = listener_name://host_name:port
#   EXAMPLE:
#     listeners = PLAINTEXT://your.host.name:9092
listeners=PLAINTEXT://:9092,CONTROLLER://:9093

# Name of listener used for communication between brokers.
inter.broker.listener.name=PLAINTEXT

# Listener name, hostname and port the broker will advertise to clients.
# If not set, it uses the value for "listeners".
advertised.listeners=PLAINTEXT://localhost:9092

# A comma-separated list of the names of the listeners used by the controller.
# If no explicit mapping set in `listener.security.protocol.map`, default will be using PLAINTEXT protocol
# This is required if running in KRaft mode.
controller.listener.names=CONTROLLER

# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
listener.security.protocol.map=CONTROLLER:PLAINTEXT,PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL

# The number of threads that the server uses for receiving requests from the network and sending responses to the network
num.network.threads=3

# The number of threads that the server uses for processing requests, which may include disk I/O
num.io.threads=8

# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400

# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400

# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600


############################# Log Basics #############################

# A comma separated list of directories under which to store log files
log.dirs=/tmp/kraft-combined-logs

# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=1

# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
num.recovery.threads.per.data.dir=1

############################# Internal Topic Settings  #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1

############################# Log Flush Policy #############################

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000

############################# Log Retention Policy #############################

# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.

# The minimum age of a log file to be eligible for deletion due to age
log.retention.hours=168

# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=1073741824

# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000

每一行都有注释,重点关注

笔者设定

192.168.0.106 nodeid 1 

192.168.0.107 nodeid 2

192.168.0.108 nodeid 3

至此配置基本上完成,同理一个节点可以同时是controller和broker,也可以仅仅是controller或者broker,因为controller的负载比较轻,所以一般是和broker一起。其中有个log.dir这个的路径是下面元数据生成的路径(选主)和数据事务日志,索引日志的存储目录

3. 启动

1. 生成uuid

任意找一个节点执行:

./kafka-storage.sh random-uuid

每次执行uuid会不一样,这个uuid标识是一个集群,所以所有节点公用一个uuid,不要每个节点重新生成,会识别不了 

 

然后执行format,如下标红是我生成的,这个每次不是固定的

 ./kafka-storage.sh format -t gZzkfRm4T1y8wSAY-ZNG5Q -c ../config/kraft/server.properties  

 格式化配置文件,同步其他节点

配置文件有什么变化?在日志配置的目录下出现

关键还是meta的文件,有集群id和节点id,版本号,这个对启动至关重要。

即在上面的log.dir的目录生成,所以尽量不能使用临时目录

2. 启动

启动就很简单了,使用刚刚配置的server.properties执行启动即可

./kafka-server-start.sh -daemon ../config/kraft/server.properties

不过为了方便查看启动日志,建议执行日志的console文件输出

 先看事务日志和索引

验证

验证很简单,查看bin同级目录下的日志即可

日志带有[2025-02-08 08:34:12,286] INFO [KafkaRaftServer nodeId=1] Kafka Server started (kafka.server.KafkaRaftServer) 

如果生成用途可以安装kafka的控制台,kafka-ui,不过我这里就不安装了,因为docker安装比较容易。

总结

kafka从3.0.0开始推出了raft模式的元数据中心,实际上类似zk,kafka自己命名kraft。使用这种方式搭建kafka集群将不再需要zk,同理,kafka的集群的每个节点可以同时是broker和controller(以前zk充当),也可以是单独的broker,controller(负载不重,不建议单独controller,跟zk没区别),官方说明需要jdk11及以上,实测jdk8可以运行,但是生成建议严格按照官方标定的jdk执行,jdk是向下兼容的,但是不确定是否会涉及新api或新特性的使用。

另外实际使用中,可能会涉及使用iptables做nat限制kafka的连接方,比如在kafka节点通过iptables限制发送者或者消费端的ip

iptables -t nat -A PREROUTING -p tcp -m tcp --dport 9093 -j DNAT --to-destination kafkaxxx:9093

kafkaxxx --- 指定的是 Kafka 服务所在的机器地址

如果kafka是对接方提供,则在nat打通时,需要客户端连接的服务器也执行iptables,否则可能出现连接kafka正常,但是不能消费。

iptables -t nat -A POSTROUTING -p tcp -m tcp --dport 9093 -j SNAT --to-source natxxx

natxxx --- 指定的是配置 iptables 的本机的地址


http://www.kler.cn/a/537695.html

相关文章:

  • 设计模式-策略模式
  • 蓝桥杯备赛——进制转化相关问题
  • MacOS 安装NVM
  • Mac电脑上好用的压缩软件
  • 力扣.270. 最接近的二叉搜索树值(中序遍历思想)
  • SystemUI中NavigationBar分析
  • PHP在线客服系统
  • 【WebLogic】Oracle发布WebLogic 14c最新版本-14.1.2.0
  • 「JVS更新日志」生产计划排程系统APS已上线!以及智能BI、低代码、规则引擎2.6更新说明
  • anaconda中可以import cv2,但是notebook中cv2 module not found
  • 深入理解 C++17 std::is_swappable
  • 使用 Axios ——个人信息修改与提示框实现
  • 参数映射服务完整解决方案
  • Could not create task ‘:mainActivity:minifyReleaseWithR8‘.
  • 【Flink快速入门-8.Flink Flink 架构介绍】
  • 利用Termux在安卓手机中安装 PostgreSQL
  • CPP集群聊天服务器开发实践(一):用户注册与登录
  • Chrome谷歌多开教程:实用方法与工具
  • 使用Python和`moviepy`库从输入的图片、动图和音频生成幻灯片式视频的示例代码
  • 盘姬工具箱:完全免费的电脑工具箱
  • DeepSeek从入门到精通:全面掌握AI大模型的核心能力
  • 【Outlook】如何将特定邮件显示在Outlook的重点收件箱中
  • 机器学习数学基础:19.线性相关与线性无关
  • TaskBuilder项目实战:创建项目
  • 为AI聊天工具添加一个知识系统 之90 详细设计之31 Derivation 之5-- 神经元变元用它衍生神经网络
  • 动手写ORM框架 - GeeORM第一天 database/sql 基础