人工智能-A*算法与卷积神经网络(CNN)结合实现路径规划
以下是一个将 A* 算法与卷积神经网络(CNN)结合实现路径规划的代码示例。主要思路是使用 A* 算法生成训练数据,然后用这些数据训练一个 CNN 模型,让 CNN 学习如何预测路径,最后使用训练好的 CNN 模型进行路径规划。
代码实现
import numpy as np
import heapq
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
# A* 算法实现
class Node:
def __init__(self, x, y, g=float('inf'), h=float('inf'), parent=None):
self.x = x
self.y = y
self.g = g
self.h = h
self.f = g + h
self.parent = parent
def __lt__(self, other):
return self.f < other.f
def heuristic(current, goal):
return abs(current[0] - goal[0]) + abs(current[1] - goal[1])
def astar(grid, start, goal):
rows, cols = grid.shape
open_list = []
closed_set = set()
start_node = Node(start[0], start[1], g=0, h=heuristic(start, goal))
heapq.heappush(open_list, start_node)
while open_list:
current_node = heapq.heappop(open_list)
if (current_node.x, current_node.y) == goal:
path = []
while current_node:
path.append((current_node.x, current_node.y))
current_node = current_node.parent
return path[::-1]
closed_set.add((current_node.x, current_node.y