通过 SQLAlchemy 实现多表映射
在使用 SQLAlchemy 进行多表映射时,我们可以使用 ORM(对象关系映射) 的方式将多个表与 Python 类进行映射。SQLAlchemy 提供了功能强大的机制,能够轻松地将数据库表和 Python 对象之间的关系建立起来。
1、问题背景
假设我们有一个数据库结构,由三个表组成:
items
- item_id
- item_handle
attributes
- attribute_id
- attribute_name
item_attributes
- item_attribute_id
- item_id
- attribute_id
- attribute_value
我们希望在 SQLAlchemy 中进行如下操作:
item = Item('item1')
item.foo = 'bar'
session.add(item)
session.commit()
item1 = session.query(Item).filter_by(handle='item1').one()
print item1.foo # => 'bar'
但是,对于 SQLAlchemy 新手来说,我们遇到了困难。虽然我们在文档中找到了相关解决方案,但它只允许将 item_id
和 attribute_id
添加到 Item
中,而无法将属性添加到 Item
对象。
2、解决方案
我们可以在 SQLAlchemy 中通过实现“实体-属性-值模式”(Entity-Attribute-Value,EAV)来实现这种多表映射。EAV 是一种数据模型,它将实体的属性存储在一张单独的表中,而不是将它们作为实体本身的列。
一个解决方案是将属性存储在一个文本字段中。这种方法的好处在于它非常直观,并且很容易实现。但是,这种方法的缺点是无法对属性进行过滤。
另一种解决方案是使用 PostgreSQL 中的 hstore
模块,它可以存储字符串到字符串的映射。这种方法的好处是可以对属性进行过滤,但是它要求使用 PostgreSQL 数据库。
下面的代码示例展示了如何使用 SQLAlchemy 实现多表映射:
class VerticalProperty(object):
"""A key/value pair.
This class models rows in the vertical table.
"""
def __init__(self, key, value):
self.key = key
self.value = value
def __repr__(self):
return '<%s %r=%r>' % (self.__class__.__name__, self.key, self.value)
class VerticalPropertyDictMixin(object):
"""Adds obj[key] access to a mapped class.
This is a mixin class. It can be inherited from directly, or included
with multiple inheritence.
Classes using this mixin must define two class properties::
_property_type:
The mapped type of the vertical key/value pair instances. Will be
invoked with two positional arugments: key, value
_property_mapping:
A string, the name of the Python attribute holding a dict-based
relationship of _property_type instances.
Using the VerticalProperty class above as an example,::
class MyObj(VerticalPropertyDictMixin):
_property_type = VerticalProperty
_property_mapping = 'props'
mapper(MyObj, sometable, properties={
'props': relationship(VerticalProperty,
collection_class=attribute_mapped_collection('key'))})
Dict-like access to MyObj is proxied through to the 'props' relationship::
myobj['key'] = 'value'
# ...is shorthand for:
myobj.props['key'] = VerticalProperty('key', 'value')
myobj['key'] = 'updated value']
# ...is shorthand for:
myobj.props['key'].value = 'updated value'
print myobj['key']
# ...is shorthand for:
print myobj.props['key'].value
"""
_property_type = VerticalProperty
_property_mapping = None
__map = property(lambda self: getattr(self, self._property_mapping))
def __getitem__(self, key):
return self.__map[key].value
def __setitem__(self, key, value):
property = self.__map.get(key, None)
if property is None:
self.__map[key] = self._property_type(key, value)
else:
property.value = value
def __delitem__(self, key):
del self.__map[key]
def __contains__(self, key):
return key in self.__map
# Implement other dict methods to taste. Here are some examples:
def keys(self):
return self.__map.keys()
def values(self):
return [prop.value for prop in self.__map.values()]
def items(self):
return [(key, prop.value) for key, prop in self.__map.items()]
def __iter__(self):
return iter(self.keys())
class Animal(VerticalPropertyDictMixin):
"""An animal.
Animal facts are available via the 'facts' property or by using
dict-like accessors on an Animal instance::
cat['color'] = 'calico'
# or, equivalently:
cat.facts['color'] = AnimalFact('color', 'calico')
"""
_property_type = AnimalFact
_property_mapping = 'facts'
def __init__(self, name):
self.name = name
def __repr__(self):
return '<%s %r>' % (self.__class__.__name__, self.name)
if __name__ == '__main__':
from sqlalchemy import (MetaData, Table, Column, Integer, Unicode,
ForeignKey, UnicodeText, and_, not_)
from sqlalchemy.orm import mapper, relationship, create_session
from sqlalchemy.orm.collections import attribute_mapped_collection
metadata = MetaData()
# Here we have named animals, and a collection of facts about them.
animals = Table('animal', metadata,
Column('id', Integer, primary_key=True),
Column('name', Unicode(100)))
facts = Table('facts', metadata,
Column('animal_id', Integer, ForeignKey('animal.id'),
primary_key=True),
Column('key', Unicode(64), primary_key=True),
Column('value', UnicodeText, default=None),)
class AnimalFact(VerticalProperty):
"""A fact about an animal."""
mapper(Animal, animals, properties={
'facts': relationship(
AnimalFact, backref='animal',
collection_class=attribute_mapped_collection('key')),
})
mapper(AnimalFact, facts)
metadata.bind = 'sqlite:///'
metadata.create_all()
session = create_session()
stoat = Animal(u'stoat')
stoat[u'color'] = u'reddish'
stoat[u'cuteness'] = u'somewhat'
session.add(stoat)
session.flush()
session.expunge_all()
critter = session.query(Animal).filter(Animal.name == u'stoat').one()
print critter[u'color']
print critter[u'cuteness']
critter[u'cuteness'] = u'very'
print 'changing cuteness:'
metadata.bind.echo = True
session.flush()
metadata.bind.echo = False
session.close()
这个解决方案允许我们将属性存储在单独的表中,并且可以在 Item
对象中使用它们。
希望这个详细的解释对您有所帮助。如果您还有其他问题,请随时提出。
SQLAlchemy 的 ORM 映射功能简化了数据库操作,允许通过 Python 对象轻松地进行增删改查,同时保持数据的完整性。