当前位置: 首页 > article >正文

场景设计:设计一个分布式限流器,采用令牌桶算法,漏桶算法、滑动窗口算法实现

目录

1. 令牌桶算法实现

设计思路

代码实现

2. 漏桶算法实现

设计思路

代码实现

3. 滑动窗口算法实现

设计思路

代码实现

测试代码示例

依赖引入

总结


以下将分别使用令牌桶算法、漏桶算法和滑动窗口算法来设计并实现一个分布式限流器的 Java 版本,同时借助 Redis 来实现分布式状态的存储与同步。

1. 令牌桶算法实现

设计思路

令牌桶算法中,系统以固定速率向令牌桶中添加令牌,每个请求需要从令牌桶中获取一个或多个令牌才能被处理。若令牌桶中没有足够的令牌,请求将被拒绝。

代码实现

java

import redis.clients.jedis.Jedis;

public class TokenBucketRateLimiter {
    private static final String REDIS_KEY = "token_bucket_rate_limiter";
    private final Jedis jedis;
    private final int capacity;
    private final double rate;

    private static final String LUA_SCRIPT =
            "local key = KEYS[1] " +
            "local tokensNeeded = tonumber(ARGV[1]) " +
            "local capacity = tonumber(ARGV[2]) " +
            "local rate = tonumber(ARGV[3]) " +
            "local now = tonumber(ARGV[4]) " +
            "local lastUpdate = tonumber(redis.call('hget', key, 'last_update')) " +
            "local tokens = tonumber(redis.call('hget', key, 'tokens')) " +
            "local elapsedTime = now - lastUpdate " +
            "local newTokens = math.min(capacity, tokens + elapsedTime * rate) " +
            "if newTokens >= tokensNeeded then " +
            "    redis.call('hset', key, 'tokens', newTokens - tokensNeeded) " +
            "    redis.call('hset', key, 'last_update', now) " +
            "    return 1 " +
            "else " +
            "    redis.call('hset', key, 'tokens', newTokens) " +
            "    redis.call('hset', key, 'last_update', now) " +
            "    return 0 " +
            "end";

    public TokenBucketRateLimiter(String host, int port, int capacity, double rate) {
        this.jedis = new Jedis(host, port);
        this.capacity = capacity;
        this.rate = rate;
        initialize();
    }

    private void initialize() {
        jedis.hset(REDIS_KEY, "tokens", String.valueOf(capacity));
        jedis.hset(REDIS_KEY, "last_update", String.valueOf(System.currentTimeMillis() / 1000));
    }

    public boolean allowRequest(int tokensNeeded) {
        Object result = jedis.eval(LUA_SCRIPT, 1, REDIS_KEY, String.valueOf(tokensNeeded),
                String.valueOf(capacity), String.valueOf(rate), String.valueOf(System.currentTimeMillis() / 1000));
        return (Long) result == 1;
    }

    public void close() {
        jedis.close();
    }
}

2. 漏桶算法实现

设计思路

漏桶算法中,请求像水一样流入漏桶,漏桶以固定的速率处理请求。如果桶满了,多余的请求将被丢弃。

代码实现

java

import redis.clients.jedis.Jedis;

public class LeakyBucketRateLimiter {
    private static final String REDIS_KEY = "leaky_bucket_rate_limiter";
    private final Jedis jedis;
    private final int capacity;
    private final double rate;

    private static final String LUA_SCRIPT =
            "local key = KEYS[1] " +
            "local now = tonumber(ARGV[1]) " +
            "local capacity = tonumber(ARGV[2]) " +
            "local rate = tonumber(ARGV[3]) " +
            "local lastUpdate = tonumber(redis.call('hget', key, 'last_update')) " +
            "local water = tonumber(redis.call('hget', key, 'water')) " +
            "local elapsedTime = now - lastUpdate " +
            "local leakedWater = math.min(water, elapsedTime * rate) " +
            "local newWater = math.max(0, water - leakedWater) " +
            "if newWater + 1 <= capacity then " +
            "    redis.call('hset', key, 'water', newWater + 1) " +
            "    redis.call('hset', key, 'last_update', now) " +
            "    return 1 " +
            "else " +
            "    redis.call('hset', key, 'water', newWater) " +
            "    redis.call('hset', key, 'last_update', now) " +
            "    return 0 " +
            "end";

    public LeakyBucketRateLimiter(String host, int port, int capacity, double rate) {
        this.jedis = new Jedis(host, port);
        this.capacity = capacity;
        this.rate = rate;
        initialize();
    }

    private void initialize() {
        jedis.hset(REDIS_KEY, "water", "0");
        jedis.hset(REDIS_KEY, "last_update", String.valueOf(System.currentTimeMillis() / 1000));
    }

    public boolean allowRequest() {
        Object result = jedis.eval(LUA_SCRIPT, 1, REDIS_KEY, String.valueOf(System.currentTimeMillis() / 1000),
                String.valueOf(capacity), String.valueOf(rate));
        return (Long) result == 1;
    }

    public void close() {
        jedis.close();
    }
}

3. 滑动窗口算法实现

设计思路

滑动窗口算法将时间划分为固定大小的窗口,统计每个窗口内的请求数量。如果请求数量超过了阈值,则拒绝新的请求。

代码实现

java

import redis.clients.jedis.Jedis;

public class SlidingWindowRateLimiter {
    private static final String REDIS_KEY_PREFIX = "sliding_window_rate_limiter:";
    private final Jedis jedis;
    private final int windowSize;
    private final int limit;

    public SlidingWindowRateLimiter(String host, int port, int windowSize, int limit) {
        this.jedis = new Jedis(host, port);
        this.windowSize = windowSize;
        this.limit = limit;
    }

    public boolean allowRequest() {
        long currentTime = System.currentTimeMillis();
        String key = REDIS_KEY_PREFIX + (currentTime / (windowSize * 1000));
        // 移除窗口外的请求记录
        jedis.zremrangeByScore(key, 0, currentTime - windowSize * 1000);
        // 添加当前请求记录
        jedis.zadd(key, currentTime, String.valueOf(currentTime));
        // 设置过期时间
        jedis.expire(key, windowSize);
        // 统计窗口内的请求数量
        long count = jedis.zcard(key);
        return count <= limit;
    }

    public void close() {
        jedis.close();
    }
}

测试代码示例

java

public class RateLimiterTest {
    public static void main(String[] args) {
        // 令牌桶算法测试
        TokenBucketRateLimiter tokenBucketRateLimiter = new TokenBucketRateLimiter("localhost", 6379, 100, 10);
        for (int i = 0; i < 20; i++) {
            if (tokenBucketRateLimiter.allowRequest(1)) {
                System.out.println("Token Bucket: Request " + i + " is allowed.");
            } else {
                System.out.println("Token Bucket: Request " + i + " is denied.");
            }
        }
        tokenBucketRateLimiter.close();

        // 漏桶算法测试
        LeakyBucketRateLimiter leakyBucketRateLimiter = new LeakyBucketRateLimiter("localhost", 6379, 100, 10);
        for (int i = 0; i < 20; i++) {
            if (leakyBucketRateLimiter.allowRequest()) {
                System.out.println("Leaky Bucket: Request " + i + " is allowed.");
            } else {
                System.out.println("Leaky Bucket: Request " + i + " is denied.");
            }
        }
        leakyBucketRateLimiter.close();

        // 滑动窗口算法测试
        SlidingWindowRateLimiter slidingWindowRateLimiter = new SlidingWindowRateLimiter("localhost", 6379, 10, 5);
        for (int i = 0; i < 20; i++) {
            if (slidingWindowRateLimiter.allowRequest()) {
                System.out.println("Sliding Window: Request " + i + " is allowed.");
            } else {
                System.out.println("Sliding Window: Request " + i + " is denied.");
            }
        }
        slidingWindowRateLimiter.close();
    }
}

依赖引入

如果你使用 Maven 项目,需要在 pom.xml 中添加 Jedis 依赖:

xml

<dependency>
    <groupId>redis.clients</groupId>
    <artifactId>jedis</artifactId>
    <version>3.7.0</version>
</dependency>

总结

通过上述代码,我们分别实现了基于令牌桶算法、漏桶算法和滑动窗口算法的分布式限流器。不同的算法适用于不同的场景,你可以根据实际需求选择合适的算法。同时,借助 Redis 实现了分布式状态的存储和同步,确保多个服务实例能够共享限流状态。


http://www.kler.cn/a/541311.html

相关文章:

  • Unity 打造游戏资源加密解密系统详解
  • 【学习笔记】计算机网络(三)
  • 【快应用】多语言适配案例
  • DeepSeek训练成本与技术揭秘
  • JAVA中的抽象学习
  • kafka服务端之副本
  • 荣耀手机Magic3系列、Magic4系列、Magic5系列、Magic6系列、Magic7系列详情对比以及最新二手价格预测
  • Spring Boot Actuator(官网文档解读)
  • QT:QWidget
  • 采用分步式无线控制架构实现水池液位自动化管理
  • LLM Note
  • 图论——并查集
  • TCP队头阻塞问题以及QUIC解决方案
  • 本地搭建springboot服务并实现公网远程调试本地接口
  • 【QT】 Qt经典面试题
  • 嵌入式硬件---OpenMV文件系统基本图像处理
  • 《量化绿皮书》Chapter 3 Calculus and Linear Algebra 微积分与线性代数(一)
  • 字节跳动大模型应用 Go 开发框架 —— Eino 实践
  • 结合实际讲NR系列2—— SIB1
  • 解锁 CSS Grid 高级技巧:提升网页布局灵活性的秘诀
  • PyTorch torch.sign函数介绍
  • MySQL 8版本认证问题
  • DeepSeek模型场景应用:基于腾讯云HAI搭建IDEA开发助手
  • Redis双写一致性(数据库与redis数据一致性)
  • Cisco ISE升级
  • ModuleJS 与 CommonJS 混用的两种解决方案