深度剖析责任链模式
一、责任链模式的本质:灵活可扩展的流水线处理
责任链模式(Chain of Responsibility Pattern)是行为型设计模式的代表,其核心思想是将请求的发送者与接收者解耦,允许多个对象都有机会处理请求。这种模式完美解决了以下场景痛点:
-
动态流程编排:审批流程、风控流程等需要灵活调整顺序
-
请求分发机制:日志处理、权限校验等需要多层级过滤
-
未知处理者:异常捕获链、HTTP中间件等场景
UML类图:
二、责任链模式的三种经典实现
1. 基础链表实现(传统方式)
// 处理器接口 public interface OrderHandler { void handle(Order order); void setNext(OrderHandler next); } // 抽象基类 public abstract class AbstractOrderHandler implements OrderHandler { private OrderHandler next; @Override public void setNext(OrderHandler next) { this.next = next; } protected void handleNext(Order order) { if (next != null) { next.handle(order); } } } // 具体处理器 public class InventoryCheckHandler extends AbstractOrderHandler { @Override public void handle(Order order) { if (!checkInventory(order)) { throw new RuntimeException("库存不足"); } System.out.println("库存校验通过"); handleNext(order); } private boolean checkInventory(Order order) { // 库存检查逻辑 return true; } } public class PaymentHandler extends AbstractOrderHandler { @Override public void handle(Order order) { processPayment(order); System.out.println("支付处理完成"); handleNext(order); } private void processPayment(Order order) { // 支付处理逻辑 } }
2. 集合迭代实现(Spring风格)
// 处理器接口 public interface Filter { void doFilter(Request request, Response response, FilterChain chain); } // 链式调用容器 public class FilterChain { private List<Filter> filters = new ArrayList<>(); private int index = 0; public FilterChain addFilter(Filter filter) { filters.add(filter); return this; } public void doFilter(Request request, Response response) { if (index < filters.size()) { Filter filter = filters.get(index++); filter.doFilter(request, response, this); } } } // 使用示例 FilterChain chain = new FilterChain() .addFilter(new AuthFilter()) .addFilter(new LogFilter()) .addFilter(new EncodingFilter()); chain.doFilter(request, response);
3. 注解驱动实现(企业级方案)
// 自定义注解 @Retention(RetentionPolicy.RUNTIME) @Target(ElementType.TYPE) public @interface OrderProcessor { int order() default 0; String[] supportType(); } // 处理器基类 public abstract class BaseOrderProcessor { @Autowired private ProcessorChain chain; public void process(OrderContext context) { if (canProcess(context)) { doProcess(context); } chain.process(context); } protected abstract boolean canProcess(OrderContext context); protected abstract void doProcess(OrderContext context); } // 具体处理器 @OrderProcessor(order = 1, supportType = "NORMAL") public class NormalOrderProcessor extends BaseOrderProcessor { @Override protected boolean canProcess(OrderContext context) { return "NORMAL".equals(context.getOrderType()); } @Override protected void doProcess(OrderContext context) { // 普通订单处理逻辑 } }
三、责任链模式的五大应用场景
场景1:审批流程系统
-
请假审批链(组长 → 经理 → 总监)
-
采购审批链(金额分级审批)
-
合同审批链(法务 → 财务 → CEO)
场景2:Web请求处理
-
Servlet Filter链
-
Spring Interceptor链
-
网关过滤器链(限流 → 鉴权 → 日志)
场景3:订单处理系统
-
订单校验链(库存 → 优惠券 → 地址)
-
订单履约链(拆单 → 分配仓库 → 物流)
场景4:异常处理系统
-
异常捕获链(业务异常 → 系统异常 → 全局异常)
-
错误恢复链(重试 → 降级 → 告警)
场景5:游戏事件处理
-
技能释放链(蓝量检查 → CD检查 → 效果触发)
-
伤害计算链(防御计算 → 暴击计算 → 元素反应)
四、责任链模式与相关模式对比
模式 | 关注点 | 与责任链的区别 |
---|---|---|
装饰器模式 | 增强对象功能 | 责任链强调传递,装饰器强调叠加功能 |
命令模式 | 请求封装 | 责任链处理请求传递,命令模式处理请求封装与执行 |
组合模式 | 树形结构 | 责任链是线性结构,组合模式是树状结构 |
策略模式 | 算法替换 | 责任链多个处理器协作,策略模式单个算法替换 |
五、企业级实战:Spring风格审批系统
架构设计
[审批请求] → [审批链构建器] → [审批处理器1] → [审批处理器2] → [...] → [审批完成] ↑ [审批规则配置中心] ↑ [数据库/配置中心]
完整代码实现
// 审批处理器接口 public interface ApprovalHandler { ApprovalResult handle(ApprovalContext context); void setNext(ApprovalHandler next); boolean support(ApprovalType type); } // 链式处理器基类 public abstract class AbstractApprovalHandler implements ApprovalHandler { private ApprovalHandler next; private ApprovalType supportType; protected AbstractApprovalHandler(ApprovalType supportType) { this.supportType = supportType; } @Override public void setNext(ApprovalHandler next) { this.next = next; } @Override public ApprovalResult handle(ApprovalContext context) { if (!support(context.getType())) { return next.handle(context); } ApprovalResult result = doHandle(context); if (result.isApproved() && next != null) { return next.handle(context); } return result; } @Override public boolean support(ApprovalType type) { return this.supportType == type; } protected abstract ApprovalResult doHandle(ApprovalContext context); } // 具体审批处理器 public class DepartmentManagerHandler extends AbstractApprovalHandler { public DepartmentManagerHandler() { super(ApprovalType.DEPARTMENT_MANAGER); } @Override protected ApprovalResult doHandle(ApprovalContext context) { // 部门经理审批逻辑 return new ApprovalResult(true, "部门经理审批通过"); } } // 审批链构建工厂 @Service public class ApprovalChainFactory { @Autowired private List<ApprovalHandler> handlers; public ApprovalHandler createChain(ApprovalType type) { List<ApprovalHandler> sortedHandlers = handlers.stream() .filter(h -> h.support(type)) .sorted(Comparator.comparingInt(h -> h.getOrder())) .collect(Collectors.toList()); ApprovalHandler head = null; ApprovalHandler current = null; for (ApprovalHandler handler : sortedHandlers) { if (head == null) { head = handler; current = handler; } else { current.setNext(handler); current = handler; } } return head; } }
六、责任链模式的五大优化技巧
1. 动态配置链顺序
// 基于配置文件的链定义 @Configuration public class ChainConfig { @Bean public FilterChain securityFilterChain() { return new FilterChain() .addFilter(new CorsFilter()) .addFilter(new AuthFilter()) .addFilter(new RateLimitFilter()); } }
2. 中断机制优化
public interface Handler { enum Result { CONTINUE, BREAK } Result handle(Request request); } public class Chain { public void process(Request request) { for (Handler handler : handlers) { if (handler.handle(request) == Result.BREAK) { return; } } } }
3. 性能监控埋点
public class MonitoredHandler implements Handler { private final Handler delegate; private final MeterRegistry registry; public MonitoredHandler(Handler delegate, MeterRegistry registry) { this.delegate = delegate; this.registry = registry; } @Override public Result handle(Request request) { Timer.Sample sample = Timer.start(registry); try { return delegate.handle(request); } finally { sample.stop(registry.timer("handler.time", "handler", delegate.getClass().getSimpleName())); } } }
七、常见陷阱与解决方案
陷阱 | 现象 | 解决方案 |
---|---|---|
循环引用 | 链式调用死循环 | 增加最大调用深度检测 |
处理器遗漏 | 请求未被任何处理器处理 | 设置默认处理器或抛出明确异常 |
顺序依赖错误 | 处理器执行顺序不符合预期 | 使用优先级注解明确顺序 |
性能瓶颈 | 长链路导致延迟过高 | 引入异步处理或并行执行 |
状态污染 | 处理器之间共享可变状态 | 使用ThreadLocal或深拷贝上下文 |