当前位置: 首页 > article >正文

面试准备——Java理论高级【笔试,面试的核心重点】

集合框架

Java集合框架是面试中的重中之重,尤其是对ListSetMap的实现类及其底层原理的考察。

1. List

  • ArrayList

    • 底层是动态数组,支持随机访问(通过索引),时间复杂度为O(1)。
    • 插入和删除元素时,如果是在中间位置,需要移动后续元素,时间复杂度为O(n)。
    • 扩容机制:默认初始容量为10,扩容时增加为原来的1.5倍。
    • 线程不安全

    面试问题

    • ArrayList的扩容机制是什么?
    • ArrayList和LinkedList的区别?

    案例

    List<Integer> list = new ArrayList<>();
    list.add(1); // 添加元素
    list.get(0); // 获取元素
    list.remove(0); // 删除元素
    
  • LinkedList

    • 底层是双向链表,适合频繁的插入和删除操作,时间复杂度为O(1)。
    • 随机访问效率低,时间复杂度为O(n)。
    • 线程不安全

    面试问题

    • LinkedList的实现原理是什么?
    • 如何实现一个LRU缓存?(可以用LinkedList实现)

    案例

    List<Integer> linkedList = new LinkedList<>();
    linkedList.add(1);
    linkedList.add(2);
    linkedList.remove(1); // 删除元素
    

2. Set

  • HashSet

    • 基于HashMap实现,元素无序且不允许重复。
    • 添加元素时,先计算哈希值,再通过equals方法判断是否重复。
    • 线程不安全

    面试问题

    • HashSet如何保证元素唯一性?
    • HashSet和TreeSet的区别?

    案例

    Set<String> set = new HashSet<>();
    set.add("A");
    set.add("B");
    set.add("A"); // 不会重复添加
    
  • TreeSet

    • 基于TreeMap实现,元素按自然顺序或自定义顺序排序。
    • 内部使用红黑树实现,插入、删除、查找的时间复杂度为O(log n)。
    • 线程不安全

    案例

    Set<Integer> treeSet = new TreeSet<>();
    treeSet.add(3);
    treeSet.add(1);
    treeSet.add(2);
    System.out.println(treeSet); // 输出 [1, 2, 3]
    

3. Map

  • HashMap

    • 基于哈希表实现,允许null键和null值。
    • 扩容机制:默认初始容量为16,负载因子为0.75,扩容时容量变为原来的2倍。
    • 线程不安全

    面试问题

    • HashMap的底层实现原理?
    • HashMap如何解决哈希冲突?(链地址法)
    • JDK 1.8中HashMap的优化?(引入红黑树)

    案例

    Map<String, Integer> map = new HashMap<>();
    map.put("A", 1);
    map.put("B", 2);
    map.get("A"); // 获取值
    
  • ConcurrentHashMap

    • 线程安全的HashMap,JDK 1.8之前使用分段锁,JDK 1.8之后使用CAS + synchronized。
    • 面试问题
      • ConcurrentHashMap如何保证线程安全?
      • ConcurrentHashMap的锁粒度是什么?

    案例

    Map<String, Integer> concurrentMap = new ConcurrentHashMap<>();
    concurrentMap.put("A", 1);
    concurrentMap.put("B", 2);
    

File API

File API用于操作文件和目录,常见操作包括创建、删除、重命名、遍历等。

常见面试问题

  1. 如何递归遍历目录下的所有文件?

    • 使用递归或Files.walk()方法。

    案例

    public void listFiles(File dir) {
        if (dir.isDirectory()) {
            File[] files = dir.listFiles();
            for (File file : files) {
                if (file.isDirectory()) {
                    listFiles(file); // 递归
                } else {
                    System.out.println(file.getName());
                }
            }
        }
    }
    
  2. 如何读取大文件?

    • 使用BufferedReader逐行读取。

    案例

    try (BufferedReader br = new BufferedReader(new FileReader("largeFile.txt"))) {
        String line;
        while ((line = br.readLine()) != null) {
            System.out.println(line);
        }
    }
    

IO

Java IO分为字节流和字符流,常见类包括InputStreamOutputStreamReaderWriter

常见面试问题

  1. 字节流 vs 字符流的区别?

    • 字节流以字节为单位操作数据,适合处理二进制文件(如图片、视频)。
    • 字符流以字符为单位操作数据,适合处理文本文件。

    案例

    // 字节流
    try (FileInputStream fis = new FileInputStream("input.txt");
         FileOutputStream fos = new FileOutputStream("output.txt")) {
        int data;
        while ((data = fis.read()) != -1) {
            fos.write(data);
        }
    }
    
    // 字符流
    try (FileReader fr = new FileReader("input.txt");
         FileWriter fw = new FileWriter("output.txt")) {
        int data;
        while ((data = fr.read()) != -1) {
            fw.write(data);
        }
    }
    
  2. NIO是什么?

    • NIO(Non-blocking IO)是Java提供的高性能IO API,基于通道(Channel)和缓冲区(Buffer)操作。
    • 核心组件ChannelBufferSelector

    案例

    try (FileChannel channel = FileChannel.open(Paths.get("input.txt"), StandardOpenOption.READ)) {
        ByteBuffer buffer = ByteBuffer.allocate(1024);
        while (channel.read(buffer) > 0) {
            buffer.flip();
            while (buffer.hasRemaining()) {
                System.out.print((char) buffer.get());
            }
            buffer.clear();
        }
    }
    

线程

线程是Java并发编程的核心,面试中常考线程的创建、生命周期、同步机制等。

常见面试问题

  1. 如何实现线程同步?

    • 使用synchronized关键字或ReentrantLock

    案例

    class Counter {
        private int count = 0;
    
        public synchronized void increment() {
            count++;
        }
    
        public int getCount() {
            return count;
        }
    }
    
  2. wait()、notify()、notifyAll()的作用?

    • 用于线程间的通信,wait()使线程等待,notify()唤醒一个等待线程,notifyAll()唤醒所有等待线程。

    案例

    class SharedResource {
        private boolean flag = false;
    
        public synchronized void produce() {
            while (flag) {
                try {
                    wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            flag = true;
            notify();
        }
    
        public synchronized void consume() {
            while (!flag) {
                try {
                    wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            flag = false;
            notify();
        }
    }
    

线程池

线程池是面试中的高频考点,尤其是对ThreadPoolExecutor的参数和原理的考察。

常见面试问题

  1. 线程池的核心参数有哪些?

    • corePoolSize:核心线程数。
    • maximumPoolSize:最大线程数。
    • keepAliveTime:空闲线程存活时间。
    • workQueue:任务队列。
    • threadFactory:线程工厂。
    • handler:拒绝策略。
  2. 线程池的拒绝策略有哪些?

    • AbortPolicy:直接抛出异常。
    • CallerRunsPolicy:由调用线程处理任务。
    • DiscardOldestPolicy:丢弃队列中最老的任务。
    • DiscardPolicy:直接丢弃任务。

    案例

    ThreadPoolExecutor executor = new ThreadPoolExecutor(
        2, // corePoolSize
        5, // maximumPoolSize
        60, // keepAliveTime
        TimeUnit.SECONDS,
        new LinkedBlockingQueue<>(10),
        Executors.defaultThreadFactory(),
        new ThreadPoolExecutor.CallerRunsPolicy()
    );
    

问题答案


ArrayList的扩容机制是什么?

  • 答案

    • ArrayList的底层是一个动态数组,初始容量为10。
    • 当元素数量超过当前容量时,ArrayList会自动扩容。
    • 扩容时,新容量通常是旧容量的1.5倍(即oldCapacity + (oldCapacity >> 1))。
    • 扩容过程会创建一个新的数组,并将旧数组中的元素复制到新数组中。

    示例

    ArrayList<Integer> list = new ArrayList<>();
    for (int i = 0; i < 20; i++) {
        list.add(i); // 当元素数量超过10时,ArrayList会自动扩容
    }
    

ArrayList和LinkedList的区别?

  • 答案

    • 底层实现
      • ArrayList基于动态数组,支持随机访问,时间复杂度为O(1)。
      • LinkedList基于双向链表,插入和删除操作效率高,时间复杂度为O(1),但随机访问效率低,时间复杂度为O(n)。
    • 内存占用
      • ArrayList占用连续内存空间。
      • LinkedList占用非连续内存空间,每个节点需要额外存储前后节点的引用。
    • 适用场景
      • ArrayList适合频繁查询的场景。
      • LinkedList适合频繁插入和删除的场景。

    示例

    List<Integer> arrayList = new ArrayList<>();
    arrayList.add(1); // 适合查询
    arrayList.get(0); // O(1)
    
    List<Integer> linkedList = new LinkedList<>();
    linkedList.add(1); // 适合插入和删除
    linkedList.remove(0); // O(1)
    

HashSet如何保证元素唯一性?

  • 答案

    • HashSet基于HashMap实现,元素存储在HashMap的键中。
    • 添加元素时,先计算元素的哈希值(通过hashCode()方法),然后通过equals()方法判断是否重复。
    • 如果哈希值相同且equals()返回true,则认为元素重复,不会添加。

    示例

    Set<String> set = new HashSet<>();
    set.add("A");
    set.add("B");
    set.add("A"); // 不会重复添加
    

HashMap的底层实现原理?

  • 答案

    • HashMap基于哈希表实现,底层是数组 + 链表(JDK 1.8之前)或数组 + 链表 + 红黑树(JDK 1.8之后)。
    • 添加元素时,先计算键的哈希值,然后通过哈希值找到数组中的位置(桶)。
    • 如果发生哈希冲突(即多个键映射到同一个桶),则使用链表或红黑树存储冲突的元素。
    • 当链表长度超过8时,链表会转换为红黑树,以提高查找效率。

    示例

    Map<String, Integer> map = new HashMap<>();
    map.put("A", 1);
    map.put("B", 2);
    map.get("A"); // 获取值
    

LinkedList的实现原理是什么?

  • 答案

    • LinkedList是基于双向链表实现的。
    • 每个节点(Node)包含三个部分:
      • 数据域(存储元素值)。
      • 前驱指针(指向前一个节点)。
      • 后继指针(指向后一个节点)。
    • 链表的头节点(first)和尾节点(last)分别指向链表的第一个和最后一个节点。
    • 插入和删除操作只需要修改节点的指针,时间复杂度为O(1)。
    • 随机访问需要从头节点或尾节点遍历,时间复杂度为O(n)。

    示例

    LinkedList<Integer> list = new LinkedList<>();
    list.add(1); // 添加到链表尾部
    list.add(2);
    list.remove(1); // 删除元素
    

如何实现一个LRU缓存?(可以用LinkedList实现)

  • 答案

    • LRU(Least Recently Used)缓存是一种淘汰最近最少使用数据的缓存策略。
    • 可以使用LinkedList + HashMap实现:
      • LinkedList用于维护数据的访问顺序,最近访问的数据放在链表头部。
      • HashMap用于快速查找数据。

    实现步骤

    1. 当访问一个数据时,如果数据在缓存中,则将其移动到链表头部。
    2. 如果数据不在缓存中,则将其添加到链表头部。
    3. 如果缓存已满,则移除链表尾部的数据。

    示例

    class LRUCache<K, V> {
        private final int capacity;
        private final Map<K, V> map;
        private final LinkedList<K> list;
    
        public LRUCache(int capacity) {
            this.capacity = capacity;
            this.map = new HashMap<>();
            this.list = new LinkedList<>();
        }
    
        public V get(K key) {
            if (map.containsKey(key)) {
                list.remove(key); // 移除旧位置
                list.addFirst(key); // 放到链表头部
                return map.get(key);
            }
            return null;
        }
    
        public void put(K key, V value) {
            if (map.containsKey(key)) {
                list.remove(key); // 移除旧位置
            } else if (map.size() >= capacity) {
                K lastKey = list.removeLast(); // 移除链表尾部数据
                map.remove(lastKey);
            }
            list.addFirst(key); // 放到链表头部
            map.put(key, value);
        }
    }
    

HashSet和TreeSet的区别?

  • 答案

    • 底层实现
      • HashSet基于HashMap实现,元素无序。
      • TreeSet基于TreeMap实现,元素按自然顺序或自定义顺序排序。
    • 性能
      • HashSet的插入、删除、查找操作的时间复杂度为O(1)。
      • TreeSet的插入、删除、查找操作的时间复杂度为O(log n)。
    • 适用场景
      • HashSet适合需要快速查找且不关心顺序的场景。
      • TreeSet适合需要有序数据的场景。

    示例

    Set<Integer> hashSet = new HashSet<>();
    hashSet.add(3);
    hashSet.add(1);
    hashSet.add(2);
    System.out.println(hashSet); // 输出顺序不确定
    
    Set<Integer> treeSet = new TreeSet<>();
    treeSet.add(3);
    treeSet.add(1);
    treeSet.add(2);
    System.out.println(treeSet); // 输出 [1, 2, 3]
    

HashMap如何解决哈希冲突?(链地址法)

  • 答案

    • HashMap使用链地址法解决哈希冲突。
    • 当多个键映射到同一个桶(数组位置)时,HashMap会将这些键值对存储在同一个链表中。
    • 在JDK 1.8中,当链表长度超过8时,链表会转换为红黑树,以提高查找效率。

    示例

    Map<String, Integer> map = new HashMap<>();
    map.put("A", 1);
    map.put("B", 2);
    map.put("C", 3);
    // 假设 "A" 和 "B" 的哈希值相同,它们会被存储在同一个链表中
    

JDK 1.8中HashMap的优化?(引入红黑树)

  • 答案

    • 在JDK 1.8中,HashMap引入了红黑树来优化性能。
    • 当链表长度超过8时,链表会转换为红黑树,查找时间复杂度从O(n)降低到O(log n)。
    • 当红黑树的节点数少于6时,红黑树会退化为链表。

    优化点

    • 提高了哈希冲突严重时的查找效率。
    • 减少了链表过长时的性能问题。

    示例

    Map<String, Integer> map = new HashMap<>();
    for (int i = 0; i < 100; i++) {
        map.put("Key" + i, i);
    }
    // 当链表长度超过8时,会自动转换为红黑树
    

ConcurrentHashMap的锁粒度是什么?

  • 答案

    • 在JDK 1.7中,ConcurrentHashMap使用分段锁(Segment),每个段独立加锁,锁粒度是段级别。
    • 在JDK 1.8中,ConcurrentHashMap使用CAS + synchronized,锁粒度是桶级别(数组中的每个位置)。
      • 对每个桶(数组中的每个位置)使用synchronized锁。
      • 使用CAS操作保证原子性。

    示例

    Map<String, Integer> concurrentMap = new ConcurrentHashMap<>();
    concurrentMap.put("A", 1);
    concurrentMap.put("B", 2);
    

ConcurrentHashMap如何保证线程安全?

  • 答案

    • 在JDK 1.7中,ConcurrentHashMap使用分段锁(Segment),每个段独立加锁。
    • 在JDK 1.8中,ConcurrentHashMap使用CAS(Compare-And-Swap) + synchronized实现线程安全。
      • 对每个桶(数组中的每个位置)使用synchronized锁。
      • 使用CAS操作保证原子性。

    示例

    Map<String, Integer> concurrentMap = new ConcurrentHashMap<>();
    concurrentMap.put("A", 1);
    concurrentMap.put("B", 2);
    

如何递归遍历目录下的所有文件?

  • 答案

    • 使用递归方法遍历目录及其子目录。
    • 对于每个文件,如果是目录,则递归调用;如果是文件,则输出文件名。

    示例

    public void listFiles(File dir) {
        if (dir.isDirectory()) {
            File[] files = dir.listFiles();
            for (File file : files) {
                 if (file.isDirectory()) {
                     listFiles(file); // 递归
                 } else {
                     System.out.println(file.getName());
                 }
            }
        }
    }
    

字节流 vs 字符流的区别?

  • 答案

    • 字节流:以字节为单位操作数据,适合处理二进制文件(如图片、视频)。
      • 核心类:InputStreamOutputStream
    • 字符流:以字符为单位操作数据,适合处理文本文件。
      • 核心类:ReaderWriter

    示例

    // 字节流
    try (FileInputStream fis = new FileInputStream("input.txt");
         FileOutputStream fos = new FileOutputStream("output.txt")) {
        int data;
        while ((data = fis.read()) != -1) {
            fos.write(data);
        }
    }
    
    // 字符流
    try (FileReader fr = new FileReader("input.txt");
         FileWriter fw = new FileWriter("output.txt")) {
        int data;
        while ((data = fr.read()) != -1) {
            fw.write(data);
        }
    }
    

如何实现线程同步?

  • 答案

    • 使用synchronized关键字或ReentrantLock实现线程同步。
    • synchronized可以修饰方法或代码块,确保同一时刻只有一个线程访问共享资源。

    示例

    class Counter {
        private int count = 0;
    
        public synchronized void increment() {
            count++;
        }
    
        public int getCount() {
            return count;
        }
    }
    

线程池的核心参数有哪些?

  • 答案

    • corePoolSize:核心线程数。
    • maximumPoolSize:最大线程数。
    • keepAliveTime:空闲线程存活时间。
    • workQueue:任务队列。
    • threadFactory:线程工厂。
    • handler:拒绝策略。

    示例

    ThreadPoolExecutor executor = new ThreadPoolExecutor(
        2, // corePoolSize
        5, // maximumPoolSize
        60, // keepAliveTime
        TimeUnit.SECONDS,
        new LinkedBlockingQueue<>(10),
        Executors.defaultThreadFactory(),
        new ThreadPoolExecutor.CallerRunsPolicy()
    );
    

线程池的拒绝策略有哪些?

  • 答案

    • AbortPolicy:直接抛出异常。
    • CallerRunsPolicy:由调用线程处理任务。
    • DiscardOldestPolicy:丢弃队列中最老的任务。
    • DiscardPolicy:直接丢弃任务。

    示例

    ThreadPoolExecutor executor = new ThreadPoolExecutor(
        2, 5, 60, TimeUnit.SECONDS,
        new LinkedBlockingQueue<>(10),
        Executors.defaultThreadFactory(),
        new ThreadPoolExecutor.CallerRunsPolicy()
    );
    

哈希表核心原理


http://www.kler.cn/a/544060.html

相关文章:

  • oracle表分区--范围分区
  • 机器学习 | scikit-learn中分块拟合vs一次性拟合所有数据
  • Unity URP后处理在Game窗口不显示
  • Oracle常用导元数据方法
  • 【Java】Object类中的equals()和hashCode()
  • iOS主要知识点梳理回顾-3-运行时消息机制
  • 什么是XMLHttpRequest?及其详细使用说明
  • 功能测试的范畴与目标
  • 通过环境变量实现多个 python 版本的自由切换以及 Conda 虚拟环境的使用教程
  • 深入探究 Rust 测试:灵活控制测试的执行方式
  • 【数据结构入门】一、数组
  • FlutterWeb实战:07-自动化部署
  • Spring Boot + ShardingSphere 踩坑记
  • 华为云函数计算FunctionGraph部署ollma+deepseek
  • Java进阶阶段的学习要点
  • 联想电脑如何进入BIOS?
  • 汽车ADAS
  • Python基于Django的微博热搜、微博舆论可视化系统(V3.0)【附源码】
  • Ansible的主机清单
  • c/c++蓝桥杯经典编程题100道(21)背包问题
  • 【网络安全】常见网络协议
  • 【工业安全】-CVE-2019-17621-D-Link Dir-859L 路由器远程代码执行漏洞
  • JAVA安全—Shiro反序列化DNS利用链CC利用链AES动态调试
  • 23页PDF | 国标《GB/T 44109-2024 信息技术 大数据 数据治理实施指南 》发布
  • ASP.NET Core SignalR的协议协商
  • 在vivado中对数据进行延时,时序对齐问题上的理清