平方数列与立方数列求和的数学推导
先上结论:
平方数列求和公式为: S 2 ( n ) = n ( n + 1 ) ( 2 n + 1 ) 6 S_2(n) = \frac{n(n+1)(2n+1)}{6} S2(n)=6n(n+1)(2n+1)
立方数列求和公式为: S 3 ( n ) = ( n ( n + 1 ) 2 ) 2 S_3(n) = \left( \frac{n(n+1)}{2} \right)^2 S3(n)=(2n(n+1))2
1 平方数列求和
如
1
2
,
2
2
,
3
2
,
…
,
n
2
1^2, 2^2, 3^2, \dots, n^2
12,22,32,…,n2 的数列。计算前
n
n
n 项和:
S
2
(
n
)
=
1
2
+
2
2
+
3
2
+
⋯
+
n
2
S_2(n) = 1^2 + 2^2 + 3^2 + \dots + n^2
S2(n)=12+22+32+⋯+n2
1.1 多项式拟合
假设
S
2
(
n
)
S_2(n)
S2(n) 是一个三次多项式(因为平方数列的增长速度为三次,为什么?看这篇为什么平方数列求和是三次多项式?):
S
2
(
n
)
=
A
n
3
+
B
n
2
+
C
n
+
D
S_2(n) = An^3 + Bn^2 + Cn + D
S2(n)=An3+Bn2+Cn+D
-
当 n = 1 n=1 n=1 时, S 2 ( 1 ) = 1 2 = 1 S_2(1) = 1^2 = 1 S2(1)=12=1
A + B + C + D = 1 A + B + C + D = 1 A+B+C+D=1 -
当 n = 2 n=2 n=2 时, S 2 ( 2 ) = 1 2 + 2 2 = 5 S_2(2) = 1^2 + 2^2 = 5 S2(2)=12+22=5
8 A + 4 B + 2 C + D = 5 8A + 4B + 2C + D = 5 8A+4B+2C+D=5 -
当 n = 3 n=3 n=3 时, S 2 ( 3 ) = 1 2 + 2 2 + 3 2 = 14 S_2(3) = 1^2 + 2^2 + 3^2 = 14 S2(3)=12+22+32=14
27 A + 9 B + 3 C + D = 14 27A + 9B + 3C + D = 14 27A+9B+3C+D=14 -
当 n = 4 n=4 n=4 时, S 2 ( 4 ) = 1 2 + 2 2 + 3 2 + 4 2 = 30 S_2(4) = 1^2 + 2^2 + 3^2 + 4^2 = 30 S2(4)=12+22+32+42=30
64 A + 16 B + 4 C + D = 30 64A + 16B + 4C + D = 30 64A+16B+4C+D=30
通过解联立方程上面四个方程,得到:
A
=
1
3
,
B
=
1
2
,
C
=
1
6
,
D
=
0
A = \frac{1}{3}, \quad B = \frac{1}{2}, \quad C = \frac{1}{6}, \quad D = 0
A=31,B=21,C=61,D=0
∴ S 2 ( n ) = 1 3 n 3 + 1 2 n 2 + 1 6 n \therefore S_2(n) = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n ∴S2(n)=31n3+21n2+61n
化简一下:
S
2
(
n
)
=
n
(
n
+
1
)
(
2
n
+
1
)
6
S_2(n) = \frac{n(n+1)(2n+1)}{6}
S2(n)=6n(n+1)(2n+1)
1.2数学归纳
S 2 ( n ) = n ( n + 1 ) ( 2 n + 1 ) 6 S_2(n) = \frac{n(n+1)(2n+1)}{6} S2(n)=6n(n+1)(2n+1)
第一步:当
n
=
1
n=1
n=1 时,
S
2
(
1
)
=
1
2
=
1
,
1
(
1
+
1
)
(
2
⋅
1
+
1
)
6
=
1
⋅
2
⋅
3
6
=
1
S_2(1) = 1^2 = 1, \quad \frac{1(1+1)(2\cdot1+1)}{6} = \frac{1 \cdot 2 \cdot 3}{6} = 1
S2(1)=12=1,61(1+1)(2⋅1+1)=61⋅2⋅3=1
成立。
归纳假设:假设公式对
n
=
k
n=k
n=k 成立,即:
S
2
(
k
)
=
k
(
k
+
1
)
(
2
k
+
1
)
6
S_2(k) = \frac{k(k+1)(2k+1)}{6}
S2(k)=6k(k+1)(2k+1)
归纳步骤:验证公式对
n
=
k
+
1
n=k+1
n=k+1 是否成立:
S
2
(
k
+
1
)
=
S
2
(
k
)
+
(
k
+
1
)
2
S_2(k+1) = S_2(k) + (k+1)^2
S2(k+1)=S2(k)+(k+1)2
代入归纳假设:
S
2
(
k
+
1
)
=
k
(
k
+
1
)
(
2
k
+
1
)
6
+
(
k
+
1
)
2
S_2(k+1) = \frac{k(k+1)(2k+1)}{6} + (k+1)^2
S2(k+1)=6k(k+1)(2k+1)+(k+1)2
提取公因式
(
k
+
1
)
(k+1)
(k+1):
S
2
(
k
+
1
)
=
(
k
+
1
)
[
k
(
2
k
+
1
)
+
6
(
k
+
1
)
]
6
S_2(k+1) = \frac{(k+1)\left[k(2k+1) + 6(k+1)\right]}{6}
S2(k+1)=6(k+1)[k(2k+1)+6(k+1)]
化简:
k
(
2
k
+
1
)
+
6
(
k
+
1
)
=
2
k
2
+
k
+
6
k
+
6
=
2
k
2
+
7
k
+
6
k(2k+1) + 6(k+1) = 2k^2 + k + 6k + 6 = 2k^2 + 7k + 6
k(2k+1)+6(k+1)=2k2+k+6k+6=2k2+7k+6
分解因式:
2
k
2
+
7
k
+
6
=
(
k
+
2
)
(
2
k
+
3
)
2k^2 + 7k + 6 = (k+2)(2k+3)
2k2+7k+6=(k+2)(2k+3)
因此:
S
2
(
k
+
1
)
=
(
k
+
1
)
(
k
+
2
)
(
2
k
+
3
)
6
S_2(k+1) = \frac{(k+1)(k+2)(2k+3)}{6}
S2(k+1)=6(k+1)(k+2)(2k+3)
公式对 n = k + 1 n=k+1 n=k+1 也成立,所以归纳合理。
2 立方数列求和
如
1
3
,
2
3
,
3
3
,
…
,
n
3
1^3, 2^3, 3^3, \dots, n^3
13,23,33,…,n3 的数列。计算前
n
n
n 项和:
S
3
(
n
)
=
1
3
+
2
3
+
3
3
+
⋯
+
n
3
S_3(n) = 1^3 + 2^3 + 3^3 + \dots + n^3
S3(n)=13+23+33+⋯+n3
2.1 等差数列性质
有以下恒等式:
k
3
=
(
k
(
k
+
1
)
2
)
2
−
(
(
k
−
1
)
k
2
)
2
k^3 = \left(\frac{k(k+1)}{2}\right)^2 - \left(\frac{(k-1)k}{2}\right)^2
k3=(2k(k+1))2−(2(k−1)k)2
将上式累加从
k
=
1
k=1
k=1 到
k
=
n
k=n
k=n:
∑
k
=
1
n
k
3
=
(
n
(
n
+
1
)
2
)
2
−
(
0
⋅
1
2
)
2
\sum_{k=1}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2 - \left(\frac{0 \cdot 1}{2}\right)^2
k=1∑nk3=(2n(n+1))2−(20⋅1)2
右边第二项为零,因此:
S
3
(
n
)
=
(
n
(
n
+
1
)
2
)
2
S_3(n) = \left(\frac{n(n+1)}{2}\right)^2
S3(n)=(2n(n+1))2
2.2 数学归纳
S 3 ( n ) = ( n ( n + 1 ) 2 ) 2 S_3(n) = \left(\frac{n(n+1)}{2}\right)^2 S3(n)=(2n(n+1))2
第一步:当
n
=
1
n=1
n=1 时,
S
3
(
1
)
=
1
3
=
1
,
(
1
(
1
+
1
)
2
)
2
=
(
2
2
)
2
=
1
S_3(1) = 1^3 = 1, \quad \left(\frac{1(1+1)}{2}\right)^2 = \left(\frac{2}{2}\right)^2 = 1
S3(1)=13=1,(21(1+1))2=(22)2=1
成立。
归纳假设:假设公式对
n
=
k
n=k
n=k 成立,即:
S
3
(
k
)
=
(
k
(
k
+
1
)
2
)
2
S_3(k) = \left(\frac{k(k+1)}{2}\right)^2
S3(k)=(2k(k+1))2
归纳步骤:验证公式对
n
=
k
+
1
n=k+1
n=k+1 是否成立:
S
3
(
k
+
1
)
=
S
3
(
k
)
+
(
k
+
1
)
3
S_3(k+1) = S_3(k) + (k+1)^3
S3(k+1)=S3(k)+(k+1)3
代入归纳假设:
S
3
(
k
+
1
)
=
(
k
(
k
+
1
)
2
)
2
+
(
k
+
1
)
3
S_3(k+1) = \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3
S3(k+1)=(2k(k+1))2+(k+1)3
提取公因式
(
k
+
1
)
2
(k+1)^2
(k+1)2:
S
3
(
k
+
1
)
=
(
k
(
k
+
1
)
2
)
2
+
(
k
+
1
)
2
(
k
+
1
)
S_3(k+1) = \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^2(k+1)
S3(k+1)=(2k(k+1))2+(k+1)2(k+1)
化简:
(
k
(
k
+
1
)
2
)
2
+
(
k
+
1
)
3
=
(
k
(
k
+
1
)
2
)
2
+
(
2
(
k
+
1
)
2
)
3
\left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3 = \left(\frac{k(k+1)}{2}\right)^2 + \left(\frac{2(k+1)}{2}\right)^3
(2k(k+1))2+(k+1)3=(2k(k+1))2+(22(k+1))3
合并为平方形式:
S
3
(
k
+
1
)
=
(
(
k
+
1
)
(
k
+
2
)
2
)
2
S_3(k+1) = \left(\frac{(k+1)(k+2)}{2}\right)^2
S3(k+1)=(2(k+1)(k+2))2
对 n = k + 1 n=k+1 n=k+1 的成立,归纳合理。