当前位置: 首页 > article >正文

每日Attention学习23——KAN-Block

模块出处

[SPL 25] [link] [code] KAN See In the Dark


模块名称

Kolmogorov-Arnold Network Block (KAN-Block)


模块作用

用于vision的KAN结构


模块结构

在这里插入图片描述


模块代码
import torch
import torch.nn as nn
import torch.nn.functional as F
import math


class Swish(nn.Module):
    def forward(self, x):
        return x * torch.sigmoid(x)


class KANLinear(torch.nn.Module):
    def __init__(
        self,
        in_features,
        out_features,
        grid_size=5,
        spline_order=3,
        scale_noise=0.1,
        scale_base=1.0,
        scale_spline=1.0,
        enable_standalone_scale_spline=True,
        base_activation=torch.nn.SiLU,
        grid_eps=0.02,
        grid_range=[-1, 1],
    ):
        super(KANLinear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.grid_size = grid_size
        self.spline_order = spline_order
        self.weight = nn.Parameter(torch.Tensor(out_features, in_features))
        self.bias = nn.Parameter(torch.Tensor(out_features))
        h = (grid_range[1] - grid_range[0]) / grid_size
        grid = (
            (
                torch.arange(-spline_order, grid_size + spline_order + 1) * h
                + grid_range[0]
            )
            .expand(in_features, -1)
            .contiguous()
        )
        self.register_buffer("grid", grid)
        self.base_weight = torch.nn.Parameter(torch.Tensor(out_features, in_features))
        self.spline_weight = torch.nn.Parameter(
            torch.Tensor(out_features, in_features, grid_size + spline_order)
        )
        if enable_standalone_scale_spline:
            self.spline_scaler = torch.nn.Parameter(
                torch.Tensor(out_features, in_features)
            )
        self.scale_noise = scale_noise
        self.scale_base = scale_base
        self.scale_spline = scale_spline
        self.enable_standalone_scale_spline = enable_standalone_scale_spline
        self.base_activation = base_activation()
        self.grid_eps = grid_eps
        self.reset_parameters()

    def reset_parameters(self):
        torch.nn.init.kaiming_uniform_(self.base_weight, a=math.sqrt(5) * self.scale_base)
        with torch.no_grad():
            noise = (
                (
                    torch.rand(self.grid_size + 1, self.in_features, self.out_features)
                    - 1 / 2
                )
                * self.scale_noise
                / self.grid_size
            )
            self.spline_weight.data.copy_(
                (self.scale_spline if not self.enable_standalone_scale_spline else 1.0)
                * self.curve2coeff(
                    self.grid.T[self.spline_order : -self.spline_order],
                    noise,
                )
            )
            if self.enable_standalone_scale_spline:
                # torch.nn.init.constant_(self.spline_scaler, self.scale_spline)
                torch.nn.init.kaiming_uniform_(self.spline_scaler, a=math.sqrt(5) * self.scale_spline)

    def b_splines(self, x: torch.Tensor):
        """
        Compute the B-spline bases for the given input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_features).

        Returns:
            torch.Tensor: B-spline bases tensor of shape (batch_size, in_features, grid_size + spline_order).
        """
        assert x.dim() == 2 and x.size(1) == self.in_features

        grid: torch.Tensor = (
            self.grid
        )  # (in_features, grid_size + 2 * spline_order + 1)
        x = x.unsqueeze(-1)
        bases = ((x >= grid[:, :-1]) & (x < grid[:, 1:])).to(x.dtype)
        for k in range(1, self.spline_order + 1):
            bases = (
                (x - grid[:, : -(k + 1)])
                / (grid[:, k:-1] - grid[:, : -(k + 1)])
                * bases[:, :, :-1]
            ) + (
                (grid[:, k + 1 :] - x)
                / (grid[:, k + 1 :] - grid[:, 1:(-k)])
                * bases[:, :, 1:]
            )

        assert bases.size() == (
            x.size(0),
            self.in_features,
            self.grid_size + self.spline_order,
        )
        return bases.contiguous()

    def curve2coeff(self, x: torch.Tensor, y: torch.Tensor):
        """
        Compute the coefficients of the curve that interpolates the given points.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_features).
            y (torch.Tensor): Output tensor of shape (batch_size, in_features, out_features).

        Returns:
            torch.Tensor: Coefficients tensor of shape (out_features, in_features, grid_size + spline_order).
        """
        assert x.dim() == 2 and x.size(1) == self.in_features
        assert y.size() == (x.size(0), self.in_features, self.out_features)

        A = self.b_splines(x).transpose(
            0, 1
        )  # (in_features, batch_size, grid_size + spline_order)
        B = y.transpose(0, 1)  # (in_features, batch_size, out_features)
        solution = torch.linalg.lstsq(
            A, B
        ).solution  # (in_features, grid_size + spline_order, out_features)
        result = solution.permute(
            2, 0, 1
        )  # (out_features, in_features, grid_size + spline_order)

        assert result.size() == (
            self.out_features,
            self.in_features,
            self.grid_size + self.spline_order,
        )
        return result.contiguous()

    @property
    def scaled_spline_weight(self):
        return self.spline_weight * (
            self.spline_scaler.unsqueeze(-1)
            if self.enable_standalone_scale_spline
            else 1.0
        )

    def forward(self, x: torch.Tensor):
        assert x.dim() == 2 and x.size(1) == self.in_features
        base_output = F.linear(self.base_activation(x), self.base_weight)
        spline_output = F.linear(
            self.b_splines(x).view(x.size(0), -1),
            self.scaled_spline_weight.view(self.out_features, -1),
        )
        return base_output + spline_output

    @torch.no_grad()
    def update_grid(self, x: torch.Tensor, margin=0.01):
        assert x.dim() == 2 and x.size(1) == self.in_features
        batch = x.size(0)

        splines = self.b_splines(x)  # (batch, in, coeff)
        splines = splines.permute(1, 0, 2)  # (in, batch, coeff)
        orig_coeff = self.scaled_spline_weight  # (out, in, coeff)
        orig_coeff = orig_coeff.permute(1, 2, 0)  # (in, coeff, out)
        unreduced_spline_output = torch.bmm(splines, orig_coeff)  # (in, batch, out)
        unreduced_spline_output = unreduced_spline_output.permute(
            1, 0, 2
        )  # (batch, in, out)

        # sort each channel individually to collect data distribution
        x_sorted = torch.sort(x, dim=0)[0]
        grid_adaptive = x_sorted[
            torch.linspace(
                0, batch - 1, self.grid_size + 1, dtype=torch.int64, device=x.device
            )
        ]

        uniform_step = (x_sorted[-1] - x_sorted[0] + 2 * margin) / self.grid_size
        grid_uniform = (
            torch.arange(
                self.grid_size + 1, dtype=torch.float32, device=x.device
            ).unsqueeze(1)
            * uniform_step
            + x_sorted[0]
            - margin
        )

        grid = self.grid_eps * grid_uniform + (1 - self.grid_eps) * grid_adaptive
        grid = torch.concatenate(
            [
                grid[:1]
                - uniform_step
                * torch.arange(self.spline_order, 0, -1, device=x.device).unsqueeze(1),
                grid,
                grid[-1:]
                + uniform_step
                * torch.arange(1, self.spline_order + 1, device=x.device).unsqueeze(1),
            ],
            dim=0,
        )

        self.grid.copy_(grid.T)
        self.spline_weight.data.copy_(self.curve2coeff(x, unreduced_spline_output))

    def regularization_loss(self, regularize_activation=1.0, regularize_entropy=1.0):
        """
        Compute the regularization loss.

        This is a dumb simulation of the original L1 regularization as stated in the
        paper, since the original one requires computing absolutes and entropy from the
        expanded (batch, in_features, out_features) intermediate tensor, which is hidden
        behind the F.linear function if we want an memory efficient implementation.

        The L1 regularization is now computed as mean absolute value of the spline
        weights. The authors implementation also includes this term in addition to the
        sample-based regularization.
        """
        l1_fake = self.spline_weight.abs().mean(-1)
        regularization_loss_activation = l1_fake.sum()
        p = l1_fake / regularization_loss_activation
        regularization_loss_entropy = -torch.sum(p * p.log())
        return (
            regularize_activation * regularization_loss_activation
            + regularize_entropy * regularization_loss_entropy
        )


class DW_bn_relu(nn.Module):
    def __init__(self, dim=768):
        super(DW_bn_relu, self).__init__()
        self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
        self.bn = nn.BatchNorm2d(dim)
        self.relu = nn.ReLU()

    def forward(self, x, H, W):
        B, N, C = x.shape
        x = x.transpose(1, 2).view(B, C, H, W)
        x = self.dwconv(x)
        x = self.bn(x)
        x = self.relu(x)
        x = x.flatten(2).transpose(1, 2)
        return x


class KANBlock(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., shift_size=5, version=4):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.dim = in_features
        grid_size=5
        spline_order=3
        scale_noise=0.1
        scale_base=1.0
        scale_spline=1.0
        base_activation=torch.nn.SiLU
        grid_eps=0.02
        grid_range=[-1, 1]
        self.fc1 = KANLinear(
                    in_features,
                    hidden_features,
                    grid_size=grid_size,
                    spline_order=spline_order,
                    scale_noise=scale_noise,
                    scale_base=scale_base,
                    scale_spline=scale_spline,
                    base_activation=base_activation,
                    grid_eps=grid_eps,
                    grid_range=grid_range,
                )
        self.fc2 = KANLinear(
                    hidden_features,
                    out_features,
                    grid_size=grid_size,
                    spline_order=spline_order,
                    scale_noise=scale_noise,
                    scale_base=scale_base,
                    scale_spline=scale_spline,
                    base_activation=base_activation,
                    grid_eps=grid_eps,
                    grid_range=grid_range,
                )
        self.fc3 = KANLinear(
                    hidden_features,
                    out_features,
                    grid_size=grid_size,
                    spline_order=spline_order,
                    scale_noise=scale_noise,
                    scale_base=scale_base,
                    scale_spline=scale_spline,
                    base_activation=base_activation,
                    grid_eps=grid_eps,
                    grid_range=grid_range,
                )   
        self.dwconv_1 = DW_bn_relu(hidden_features)
        self.dwconv_2 = DW_bn_relu(hidden_features)
        self.dwconv_3 = DW_bn_relu(hidden_features)
        self.drop = nn.Dropout(drop)
        self.shift_size = shift_size
        self.pad = shift_size // 2

    def forward(self, x, H, W):
        B, N, C = x.shape
        x = self.fc1(x.reshape(B*N,C))
        x = x.reshape(B,N,C).contiguous()
        x = self.dwconv_1(x, H, W)
        x = self.fc2(x.reshape(B*N,C))
        x = x.reshape(B,N,C).contiguous()
        x = self.dwconv_2(x, H, W)
        x = self.fc3(x.reshape(B*N,C))
        x = x.reshape(B,N,C).contiguous()
        x = self.dwconv_3(x, H, W)
        return x
    

if __name__ == '__main__':
    x = torch.randn([1, 22*22, 128])
    kan = KANBlock(in_features=128)
    out = kan(x, H=22, W=22)
    print(out.shape)  # [1, 22*22, 128]


http://www.kler.cn/a/547023.html

相关文章:

  • PHP场地预定小程序
  • 清理docker/podman的存储空间
  • 智能光子学——机器学习赋能的光子学器件与系统:从创新设计到前沿应用
  • 【IC】AI处理器核心--第二部分 用于处理 DNN 的硬件设计
  • 初阶c语言(练习题,猜随机数,关机程序)
  • java后端开发day15--字符串(一)
  • 求助文心一言帮我用antv x6开发一个直线审批流程设计页面Vue2.0
  • 数据结构:哈夫曼树
  • Ubuntu 上安装 MySQL 8.0.22
  • Redis常用的五种数据结构详解
  • #渗透测试#批量漏洞挖掘#AJ-Report开源数据大屏存在远程命令执行漏洞
  • vue3 怎么自动全局注册某个目录下的所有 vue 和 tsx 组件
  • ESP32无线Wi-Fi蓝牙方案,设备智能连接控制,物联网通信应用
  • Node.js 中的 Event 模块详解
  • SpringCloud - Seata 分布式事务
  • 2月14日笔记
  • Java中如何高效地合并多个对象的List数据:方法与案例解析!
  • 2025年AI免费大战:从DeepSeek到GPT-5的商业逻辑与行业变革
  • 数据库与表的基本操作
  • 在香橙派5 NPU上使用Yolov5