P5693 EI 的第六分块 Solution
Description
给定序列 a = ( a 1 , a 2 , ⋯ , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,⋯,an),有 m m m 个操作分两种:
- add ( l , r , v ) \operatorname{add}(l,r,v) add(l,r,v):对每个 i ∈ [ l , r ] i \in [l,r] i∈[l,r] 执行 a i ← a i + v a_i \gets a_i+v ai←ai+v.
- query ( l , r ) \operatorname{query}(l,r) query(l,r):求 max ( 0 , max [ u , v ] ∈ [ l , r ] ∑ i = u v a i ) \max(0,\max\limits_{[u,v]\in [l,r]}\sum\limits_{i=u}^v a_i) max(0,[u,v]∈[l,r]maxi=u∑vai).
Limitations
1
≤
n
,
m
≤
4
×
1
0
5
1 \le n,m \le 4\times 10^5
1≤n,m≤4×105
1
≤
l
≤
r
≤
n
1 \le l \le r \le n
1≤l≤r≤n
∣
a
i
∣
≤
1
0
9
|a_i| \le 10^9
∣ai∣≤109
1
≤
v
≤
1
0
6
\textcolor{red}{1 \le v \le 10^6}
1≤v≤106
1.8
s
,
256
MB
1.8\text{s},256\text{MB}
1.8s,256MB
Solution
求最大子段和,显然要维护区间和
sum
\textit{sum}
sum,最大前缀、后缀、子段和
lmax
,
rmax
,
tmax
\textit{lmax},\textit{rmax},\textit{tmax}
lmax,rmax,tmax.
考虑区间加
v
v
v 对这些值的影响:
如果选择的区间没有变,则答案要加上
k
v
kv
kv,其中
k
k
k 为该区间的长度.
考虑把上述四个值变成一次函数
y
=
k
x
+
b
y=kx+b
y=kx+b,若选择区间不变则
x
x
x 加上
v
v
v.
但选择的区间不是一成不变的,为了判断,我们需要维护阈值
L
L
L,表示若
x
≥
L
x \ge L
x≥L 则四个值选择的区间至少会变一个.
pushup
时
+
+
+ 操作变成一次函数相加,
max
\max
max 变成函数在
x
=
0
x=0
x=0 时的比较.
L
L
L 取子节点的
L
L
L 的最小,以及
lmax
,
rmax
\textit{lmax},\textit{rmax}
lmax,rmax 两种方案,
tmax
\textit{tmax}
tmax 三种方案的函数交点取最小(若小于
0
0
0 或无交则变为
∞
\infty
∞).
每次修改就把 x x x 减去 v v v,若减后 x < 0 x < 0 x<0,则暴力遍历子树进行重构,若一棵子树的 x ≥ 0 x \ge 0 x≥0 就直接打标记而不进入.
上述即 KTT,时间复杂度约为
O
(
(
n
+
m
)
log
3
n
)
O((n+m)\log^3 n)
O((n+m)log3n),具体见 EI’s blog.
需要注意,上述方法建立在区间加正数这一基础上.
Code
4.22 KB , 5.10 s , 138.06 MB (in total, C++20 with O2) 4.22\text{KB},5.10\text{s},138.06\text{MB}\;\texttt{(in total, C++20 with O2)} 4.22KB,5.10s,138.06MB(in total, C++20 with O2)
// Problem: P5693 EI 的第六分块
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P5693
// Memory Limit: 256 MB
// Time Limit: 1800 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
const i64 inf = 3e18;
struct Line {
int k;
i64 b;
Line(int _k = 0, i64 _b = 0): k(_k), b(_b) {}
void add(i64 v) {
b += k * v;
}
};
inline Line operator+(const Line& lhs, const Line& rhs) {
return Line(lhs.k + rhs.k, lhs.b + rhs.b);
}
inline pair<Line, i64> find(const Line& a, const Line& b) {
if (a.k < b.k || (a.k == b.k && a.b < b.b)) {
return find(b, a);
}
if (a.b >= b.b) {
return make_pair(a, inf);
}
return make_pair(b, (b.b - a.b) / (a.k - b.k));
}
struct Node {
int l, r;
Line lmax, rmax, tmax, sum;
i64 x, tag;
};
using Tree = vector<Node>;
inline int ls(int u) { return 2 * u + 1; }
inline int rs(int u) { return 2 * u + 2; }
inline void merge(Node& res, const Node& le, const Node& ri) {
i64 x0 = min(le.x, ri.x);
Line sum = le.sum + ri.sum;
auto [lmax, x1] = find(le.lmax, le.sum + ri.lmax);
auto [rmax, x2] = find(ri.rmax, le.rmax + ri.sum);
auto [temp, x3] = find(le.tmax, ri.tmax);
auto [tmax, x4] = find(temp, le.rmax + ri.lmax);
res.lmax = lmax;
res.rmax = rmax;
res.tmax = tmax;
res.sum = sum;
res.x = min({x0, x1, x2, x3, x4});
}
inline void pushup(Tree& tr, int u) {
merge(tr[u], tr[ls(u)], tr[rs(u)]);
}
inline void add(Tree& tr, int u, i64 v) {
tr[u].tag += v;
tr[u].x -= v;
tr[u].lmax.add(v);
tr[u].rmax.add(v);
tr[u].sum.add(v);
tr[u].tmax.add(v);
}
inline void pushdown(Tree& tr, int u) {
if (tr[u].tag) {
add(tr, ls(u), tr[u].tag);
add(tr, rs(u), tr[u].tag);
tr[u].tag = 0;
}
}
inline void build(Tree& tr, int u, int l, int r, vector<i64>& a) {
tr[u].l = l;
tr[u].r = r;
if (l == r) {
Line f(1, a[l]);
tr[u].lmax = tr[u].rmax = tr[u].tmax = tr[u].sum = f;
tr[u].x = inf;
return;
}
int mid = (l + r) >> 1;
build(tr, ls(u), l, mid, a);
build(tr, rs(u), mid + 1, r, a);
pushup(tr, u);
}
inline void defeat(Tree& tr, int u, i64 v) {
if (v > tr[u].x) {
defeat(tr, ls(u), tr[u].tag + v);
defeat(tr, rs(u), tr[u].tag + v);
tr[u].tag = 0;
pushup(tr, u);
}
else {
add(tr, u, v);
}
}
inline void update(Tree& tr, int u, int l, int r, i64 v) {
if (l <= tr[u].l && tr[u].r <= r) {
return defeat(tr, u, v);
}
int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(tr, u);
if (l <= mid) {
update(tr, ls(u), l, r, v);
}
if (r > mid) {
update(tr, rs(u), l, r, v);
}
pushup(tr, u);
}
inline Node query(Tree& tr, int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) {
return tr[u];
}
int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(tr, u);
if (r <= mid) {
return query(tr, ls(u), l, r);
}
if (l > mid) {
return query(tr, rs(u), l, r);
}
Node le = query(tr, ls(u), l, r), ri = query(tr, rs(u), l, r), res;
merge(res, le, ri);
return res;
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n, m;
scanf("%d %d", &n, &m);
vector<i64> a(n);
for (int i = 0; i < n; i++) {
scanf("%lld", &a[i]);
}
Tree ktt(n << 2);
build(ktt, 0, 0, n - 1, a);
for (int i = 0, op, l, r; i < m; i++) {
scanf("%d %d %d", &op, &l, &r);
l--, r--;
if (op == 1) {
i64 v;
scanf("%lld", &v);
update(ktt, 0, l, r, v);
}
else {
printf("%lld\n", max(query(ktt, 0, l, r).tmax.b, 0LL));
}
}
return 0;
}