当前位置: 首页 > article >正文

大数据学习(45) - Flink基本处理函数

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门
💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


1 处理函数的功能和使用

我们之前学习的转换算子,一般只是针对某种具体操作来定义的,能够拿到的信息比较有限。如果我们想要访问事件的时间戳,或者当前的水位线信息,都是完全做不到的。跟时间相关的操作,目前我们只会用窗口来处理。而在很多应用需求中,要求我们对时间有更精细的控制,需要能够获取水位线,甚至要“把控时间”、定义什么时候做什么事,这就不是基本的时间窗口能够实现的了。

这时就需要使用底层的处理函数。处理函数提供了一个“定时服务”(TimerService),我们可以通过它访问流中的事件(event)、时间戳(timestamp)、水位线(watermark),甚至可以注册“定时事件”。而且处理函数继承了AbstractRichFunction抽象类,所以拥有富函数类的所有特性,同样可以访问状态(state)和其他运行时信息。此外,处理函数还可以直接将数据输出到侧输出流(side output)中。所以,处理函数是最为灵活的处理方法,可以实现各种自定义的业务逻辑。

处理函数的使用与基本的转换操作类似,只需要直接基于DataStream调用.process()方法就可以了。方法需要传入一个ProcessFunction作为参数,用来定义处理逻辑。

stream.process(new MyProcessFunction())

这里ProcessFunction不是接口,而是一个抽象类,继承了AbstractRichFunction;MyProcessFunction是它的一个具体实现。所以所有的处理函数,都是富函数(RichFunction),富函数可以调用的东西这里同样都可以调用。

2 ProcessFunction解析

在源码中我们可以看到,抽象类ProcessFunction继承了AbstractRichFunction,有两个泛型类型参数:I表示Input,也就是输入的数据类型;O表示Output,也就是处理完成之后输出的数据类型。

内部单独定义了两个方法:一个是必须要实现的抽象方法.processElement();另一个是非抽象方法.onTimer()。

public abstract class ProcessFunction<I, O> extends AbstractRichFunction {



    ...

    public abstract void processElement(I value, Context ctx, Collector<O> out) throws Exception;



    public void onTimer(long timestamp, OnTimerContext ctx, Collector<O> out) throws Exception {}

    ...



}

1)抽象方法.processElement()

用于“处理元素”,定义了处理的核心逻辑。这个方法对于流中的每个元素都会调用一次,参数包括三个:输入数据值value,上下文ctx,以及“收集器”(Collector)out。方法没有返回值,处理之后的输出数据是通过收集器out来定义的。

  1. value:当前流中的输入元素,也就是正在处理的数据,类型与流中数据类型一致。
  2. ctx:类型是ProcessFunction中定义的内部抽象类Context,表示当前运行的上下文,可以获取到当前的时间戳,并提供了用于查询时间和注册定时器的“定时服务”(TimerService),以及可以将数据发送到“侧输出流”(side output)的方法.output()。
  3. out:“收集器”(类型为Collector),用于返回输出数据。使用方式与flatMap算子中的收集器完全一样,直接调用out.collect()方法就可以向下游发出一个数据。这个方法可以多次调用,也可以不调用。

通过几个参数的分析不难发现,ProcessFunction可以轻松实现flatMap、map、filter这样的基本转换功能;而通过富函数提供的获取上下文方法.getRuntimeContext(),也可以自定义状态(state)进行处理,这也就能实现聚合操作的功能了。

2)非抽象方法.onTimer()

这个方法只有在注册好的定时器触发的时候才会调用,而定时器是通过“定时服务”TimerService来注册的。打个比方,注册定时器(timer)就是设了一个闹钟,到了设定时间就会响;而.onTimer()中定义的,就是闹钟响的时候要做的事。所以它本质上是一个基于时间的“回调”(callback)方法,通过时间的进展来触发;在事件时间语义下就是由水位线(watermark)来触发了。

定时方法.onTimer()也有三个参数:时间戳(timestamp),上下文(ctx),以及收集器(out)。这里的timestamp是指设定好的触发时间,事件时间语义下当然就是水位线了。另外这里同样有上下文和收集器,所以也可以调用定时服务(TimerService),以及任意输出处理之后的数据。

既然有.onTimer()方法做定时触发,我们用ProcessFunction也可以自定义数据按照时间分组、定时触发计算输出结果;这其实就实现了窗口(window)的功能。所以说ProcessFunction其实可以实现一切功能。

注意:在Flink中,只有“按键分区流”KeyedStream才支持设置定时器的操作。

3 处理函数的分类

我们知道,DataStream在调用一些转换方法之后,有可能生成新的流类型;例如调用.keyBy()之后得到KeyedStream,进而再调用.window()之后得到WindowedStream。对于不同类型的流,其实都可以直接调用.process()方法进行自定义处理,这时传入的参数就都叫作处理函数。当然,它们尽管本质相同,都是可以访问状态和时间信息的底层API,可彼此之间也会有所差异。

Flink提供了8个不同的处理函数:

(1)ProcessFunction

最基本的处理函数,基于DataStream直接调用.process()时作为参数传入。

(2)KeyedProcessFunction

对流按键分区后的处理函数,基于KeyedStream调用.process()时作为参数传入。要想使用定时器,比如基于KeyedStream。

(3)ProcessWindowFunction

开窗之后的处理函数,也是全窗口函数的代表。基于WindowedStream调用.process()时作为参数传入。

(4)ProcessAllWindowFunction

同样是开窗之后的处理函数,基于AllWindowedStream调用.process()时作为参数传入。

(5)CoProcessFunction

合并(connect)两条流之后的处理函数,基于ConnectedStreams调用.process()时作为参数传入。关于流的连接合并操作,我们会在后续章节详细介绍。

(6)ProcessJoinFunction

间隔连接(interval join)两条流之后的处理函数,基于IntervalJoined调用.process()时作为参数传入。

(7)BroadcastProcessFunction

广播连接流处理函数,基于BroadcastConnectedStream调用.process()时作为参数传入。这里的“广播连接流”BroadcastConnectedStream,是一个未keyBy的普通DataStream与一个广播流(BroadcastStream)做连接(conncet)之后的产物。关于广播流的相关操作,我们会在后续章节详细介绍。

(8)KeyedBroadcastProcessFunction

按键分区的广播连接流处理函数,同样是基于BroadcastConnectedStream调用.process()时作为参数传入。与BroadcastProcessFunction不同的是,这时的广播连接流,是一个KeyedStream与广播流(BroadcastStream)做连接之后的产物。


http://www.kler.cn/a/548464.html

相关文章:

  • Android中获取so文件来源于哪个库
  • 轻松上手:2025年微服务教程
  • AWS上基于高德地图API验证Amazon Redshift里国内地址数据正确性的设计方案
  • 【人工智能】通过python练习机器学习中的8大算法
  • k8s强制删除状态为 Terminating的Namespace
  • Oracle EBS 11i R12 更改form颜色
  • 【工业场景】用YOLOv8实现烟雾识别
  • 李宏毅机器学习笔记:【6.Optimization、Adaptive Learning Rate】
  • 【kafka系列】消费者
  • 1-1 Git如何安装小乌龟
  • 网络安全中的account和audit区别
  • 47.实验室管理系统(基于SSM和html的Java项目)
  • Kotlin 2.1.0 入门教程(十六)属性、getter、setter、幕后字段、后备属性、编译时常量、延迟初始化
  • 性能测试工具
  • 自建 Redis 中设置 ACL 用户和权限
  • VMware安装Kali以及部署DVWA
  • uniapp可视化-活动报名表单系统-代码生成器
  • wordpress资讯类网站整站打包
  • 2025-2-12算法打卡
  • PMP--冲刺--流程图