当前位置: 首页 > article >正文

用大模型学大模型05逻辑回归

deepseek.com:逻辑回归的目标函数,损失函数,梯度下降 标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示, 模型应用场景和优缺点,及如何改进解决及改进方法数据推导。

逻辑回归全面解析

一、数学推导

模型定义
逻辑回归模型为概率预测模型,输出 P ( y = 1 ∣ x ) = σ ( w ⊤ x + b ) P(y=1 \mid \mathbf{x}) = \sigma(\mathbf{w}^\top \mathbf{x} + b) P(y=1x)=σ(wx+b),其中 σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1+e^{-z}} σ(z)=1+ez1


1. 目标函数与损失函数

  • 损失函数(交叉熵)
    单个样本的损失:
    L ( y , y ^ ) = − y log ⁡ ( y ^ ) − ( 1 − y ) log ⁡ ( 1 − y ^ ) \mathcal{L}(y, \hat{y}) = -y \log(\hat{y}) - (1-y) \log(1-\hat{y}) L(y,y^)=ylog(y^)(1y)log(1y^)
    其中 y ^ = σ ( w ⊤ x + b ) \hat{y} = \sigma(\mathbf{w}^\top \mathbf{x} + b) y^=σ(wx+b)

    所有样本的平均损失(标量形式):
    J ( w , b ) = − 1 N ∑ i = 1 N [ y i log ⁡ ( y ^ i ) + ( 1 − y i ) log ⁡ ( 1 − y ^ i ) ] J(\mathbf{w}, b) = -\frac{1}{N} \sum_{i=1}^N \left[ y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i) \right] J(w,b)=N1i=1N[yilog(y^i)+(1yi)log(1y^i)]

    矩阵形式( X \mathbf{X} X为设计矩阵, y \mathbf{y} y为标签向量):
    J ( w , b ) = − 1 N [ y ⊤ log ⁡ ( σ ( X w + b ) ) + ( 1 − y ) ⊤ log ⁡ ( 1 − σ ( X w + b ) ) ] J(\mathbf{w}, b) = -\frac{1}{N} \left[ \mathbf{y}^\top \log(\sigma(\mathbf{X}\mathbf{w} + b)) + (1-\mathbf{y})^\top \log(1-\sigma(\mathbf{X}\mathbf{w} + b)) \right] J(w,b)=N1[ylog(σ(Xw+b))+(1y)log(1σ(Xw+b))]


2. 梯度下降推导

  • 标量形式梯度
    w j w_j wj求偏导:
    ∂ L ∂ w j = ( y ^ − y ) x j \frac{\partial \mathcal{L}}{\partial w_j} = (\hat{y} - y) x_j wjL=(y^y)xj
    b b b求偏导:
    ∂ L ∂ b = y ^ − y \frac{\partial \mathcal{L}}{\partial b} = \hat{y} - y bL=y^y

  • 矩阵形式梯度
    梯度矩阵为:
    ∇ w J = 1 N X ⊤ ( σ ( X w + b ) − y ) \nabla_{\mathbf{w}} J = \frac{1}{N} \mathbf{X}^\top (\sigma(\mathbf{X}\mathbf{w} + b) - \mathbf{y}) wJ=N1X(σ(Xw+b)y)
    ∂ J ∂ b = 1 N ∑ i = 1 N ( y ^ i − y i ) \frac{\partial J}{\partial b} = \frac{1}{N} \sum_{i=1}^N (\hat{y}_i - y_i) bJ=N1i=1N(y^iyi)


损失函数的设计是机器学习模型的核心环节,它决定了模型如何衡量预测值与真实值的差异,并指导参数优化方向。逻辑回归的损失函数(交叉熵)设计并非偶然,而是基于概率建模、数学优化和信息论的深刻原理。以下从多个角度详细解释其设计逻辑:


一、损失函数的设计逻辑

1. 概率建模的视角

逻辑回归的目标是预测样本属于某一类的概率(二分类)。

  • 假设数据服从伯努利分布
    对单个样本,标签 y ∈ { 0 , 1 } y \in \{0,1\} y{0,1},模型预测的概率为:
    { P ( y = 1 ∣ x ) = y ^ = σ ( w ⊤ x + b ) , P ( y = 0 ∣ x ) = 1 − y ^ . \begin{cases} P(y=1 \mid \mathbf{x}) = \hat{y} = \sigma(\mathbf{w}^\top \mathbf{x} + b), \\ P(y=0 \mid \mathbf{x}) = 1 - \hat{y}. \end{cases} {P(y=1x)=y^=σ(wx+b),P(y=0x)=1y^.
    样本的联合似然函数为:
    L ( w , b ) = ∏ i = 1 N y ^ i y i ( 1 − y ^ i ) 1 − y i . L(\mathbf{w}, b) = \prod_{i=1}^N \hat{y}_i^{y_i} (1 - \hat{y}_i)^{1 - y_i}. L(w,b)=i=1Ny^iyi(1y^i)1yi.

  • 最大化对数似然
    为了便于优化,对似然函数取负对数(将乘法转为加法,凸函数性质不变):
    − log ⁡ L ( w , b ) = − ∑ i = 1 N [ y i log ⁡ y ^ i + ( 1 − y i ) log ⁡ ( 1 − y ^ i ) ] . -\log L(\mathbf{w}, b) = -\sum_{i=1}^N \left[ y_i \log \hat{y}_i + (1 - y_i) \log (1 - \hat{y}_i) \right]. logL(w,b)=i=1N[yilogy^i+(1yi)log(1y^i)].
    最小化该式等价于最大化似然函数,此即 交叉熵损失

2. 信息论视角

交叉熵(Cross-Entropy)衡量两个概率分布 P P P(真实分布)和 Q Q Q(预测分布)的差异:
H ( P , Q ) = − E P [ log ⁡ Q ] . H(P, Q) = -\mathbb{E}_{P}[\log Q]. H(P,Q)=EP[logQ].
对于二分类问题:

  • 真实分布 P P P:标签 y y y是确定的(0或1),可视为一个 Dirac delta分布
  • 预测分布 Q Q Q:模型输出的概率 y ^ \hat{y} y^
    交叉熵的表达式与负对数似然一致,因此最小化交叉熵等价于让预测分布逼近真实分布。
3. 优化视角:梯度性质
  • 交叉熵 vs 均方误差(MSE)
    若使用 MSE 损失 L = 1 2 ( y − y ^ ) 2 \mathcal{L} = \frac{1}{2}(y - \hat{y})^2 L=21(yy^)2,其梯度为:
    ∂ L ∂ w j = ( y − y ^ ) ⋅ y ^ ( 1 − y ^ ) ⋅ x j . \frac{\partial \mathcal{L}}{\partial w_j} = (y - \hat{y}) \cdot \hat{y} (1 - \hat{y}) \cdot x_j. wjL=(yy^)y^(1y^)xj.
    y ^ \hat{y} y^接近 0 或 1 时(预测置信度高),梯度中的 y ^ ( 1 − y ^ ) \hat{y}(1 - \hat{y}) y^(1y^)趋近于 0,导致 梯度消失,参数更新缓慢。

    交叉熵的梯度为:
    ∂ L ∂ w j = ( y ^ − y ) x j . \frac{\partial \mathcal{L}}{\partial w_j} = (\hat{y} - y) x_j. wjL=(y^y)xj.
    梯度直接正比于误差 ( y ^ − y ) (\hat{y} - y) (y^y),无论预测值大小,梯度始终有效,优化更高效。

4. 数学性质
  • 凸性:交叉熵损失函数在逻辑回归中是凸函数(Hessian矩阵半正定),保证梯度下降能找到全局最优解。
  • 概率校准性:交叉熵强制模型输出具有概率意义(需配合 sigmoid 函数),而 MSE 无此特性。

二、为什么不是其他损失函数?

1. 均方误差(MSE)的缺陷
  • 梯度消失问题(如上述)。
  • 对概率的惩罚不对称:
    y = 1 y=1 y=1时,预测 y ^ = 0.9 \hat{y}=0.9 y^=0.9的 MSE 损失为 0.01 0.01 0.01,而交叉熵损失为 − log ⁡ ( 0.9 ) ≈ 0.105 -\log(0.9) \approx 0.105 log(0.9)0.105
    交叉熵对错误预测(如 y ^ = 0.1 \hat{y}=0.1 y^=0.1 y = 1 y=1 y=1)的惩罚更严厉( − log ⁡ ( 0.1 ) ≈ 2.3 -\log(0.1) \approx 2.3 log(0.1)2.3),符合分类任务需求。
2. 其他替代损失函数
  • Hinge Loss(SVM使用)
    适用于间隔最大化,但对概率建模不直接,且优化目标不同。
  • Focal Loss
    改进交叉熵,解决类别不平衡问题,但需额外调整超参数。

三、交叉熵的数学推导

1. 从伯努利分布到交叉熵

假设样本独立,标签 y ∼ Bernoulli ( y ^ ) y \sim \text{Bernoulli}(\hat{y}) yBernoulli(y^),其概率质量函数为:
P ( y ∣ y ^ ) = y ^ y ( 1 − y ^ ) 1 − y . P(y \mid \hat{y}) = \hat{y}^y (1 - \hat{y})^{1 - y}. P(yy^)=y^y(1y^)1y.
对数似然函数为:
log ⁡ P ( y ∣ y ^ ) = y log ⁡ y ^ + ( 1 − y ) log ⁡ ( 1 − y ^ ) . \log P(y \mid \hat{y}) = y \log \hat{y} + (1 - y) \log (1 - \hat{y}). logP(yy^)=ylogy^+(1y)log(1y^).
最大化对数似然等价于最小化其负数,即交叉熵损失。

2. 梯度推导(矩阵形式)

设设计矩阵 X ∈ R N × D \mathbf{X} \in \mathbb{R}^{N \times D} XRN×D,权重 w ∈ R D \mathbf{w} \in \mathbb{R}^D wRD,偏置 b ∈ R b \in \mathbb{R} bR,预测值 y ^ = σ ( X w + b ) \hat{\mathbf{y}} = \sigma(\mathbf{X}\mathbf{w} + b) y^=σ(Xw+b)
交叉熵损失:
J ( w , b ) = − 1 N [ y ⊤ log ⁡ y ^ + ( 1 − y ) ⊤ log ⁡ ( 1 − y ^ ) ] . J(\mathbf{w}, b) = -\frac{1}{N} \left[ \mathbf{y}^\top \log \hat{\mathbf{y}} + (1 - \mathbf{y})^\top \log (1 - \hat{\mathbf{y}}) \right]. J(w,b)=N1[ylogy^+(1y)log(1y^)].
梯度计算:
∂ J ∂ w = 1 N X ⊤ ( y ^ − y ) , \frac{\partial J}{\partial \mathbf{w}} = \frac{1}{N} \mathbf{X}^\top (\hat{\mathbf{y}} - \mathbf{y}), wJ=N1X(y^y),
∂ J ∂ b = 1 N ∑ i = 1 N ( y ^ i − y i ) . \frac{\partial J}{\partial b} = \frac{1}{N} \sum_{i=1}^N (\hat{y}_i - y_i). bJ=N1i=1N(y^iyi).


四、实际应用中的设计原则

  1. 任务需求匹配:分类任务需概率输出,回归任务用 MSE。
  2. 优化效率:梯度应稳定且易于计算。
  3. 概率解释性:损失函数需与概率模型一致(如交叉熵配 sigmoid)。
  4. 鲁棒性:对异常值的敏感程度(交叉熵比 MSE 更敏感,需数据清洗)。

五、总结

逻辑回归的交叉熵损失函数是通过以下步骤设计的:

  1. 概率假设:假设数据服从伯努利分布。
  2. 最大似然估计:将参数估计问题转化为优化问题。
  3. 数学简化:取负对数似然,得到交叉熵形式。
  4. 优化验证:选择梯度性质更优的损失函数。

这种设计使得逻辑回归在二分类任务中高效、稳定,且输出具有概率意义,成为基础且强大的模型。

二、PyTorch 代码案例
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification

# 生成数据
X, y = make_classification(n_samples=1000, n_features=2, n_redundant=0, n_clusters_per_class=1)
X = torch.tensor(X, dtype=torch.float32)
y = torch.tensor(y, dtype=torch.float32).view(-1, 1)

# 定义模型
class LogisticRegression(nn.Module):
    def __init__(self, input_dim):
        super().__init__()
        self.linear = nn.Linear(input_dim, 1)
    
    def forward(self, x):
        return torch.sigmoid(self.linear(x))

model = LogisticRegression(2)
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

# 训练
losses = []
for epoch in range(100):
    y_pred = model(X)
    loss = criterion(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
    losses.append(loss.item())

# 可视化损失曲线
plt.plot(losses)
plt.title("Training Loss")
plt.show()

# 决策边界可视化
w = model.linear.weight.detach().numpy()[0]
b = model.linear.bias.detach().numpy()

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100), np.linspace(y_min, y_max, 100))
Z = model(torch.tensor(np.c_[xx.ravel(), yy.ravel()], dtype=torch.float32)).detach().numpy()
Z = Z.reshape(xx.shape)

plt.contourf(xx, yy, Z, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y.squeeze(), edgecolors='k')
plt.title("Decision Boundary")
plt.show()

三、可视化展示
  • 数据分布:二维散点图展示类别分离情况。
  • 损失曲线:训练过程中损失值下降曲线。
  • 决策边界:等高线图显示模型预测分界线。

四、应用场景与优缺点
  • 应用场景
    信用评分、垃圾邮件检测、疾病预测(线性可分问题)。

  • 优点

    1. 计算高效,适合大规模数据。
    2. 输出概率解释性强。
  • 缺点

    1. 无法直接处理非线性关系。
    2. 对多重共线性敏感。

五、改进方法与数学推导
  1. 正则化

    • L2正则化:目标函数变为
      J reg = J ( w , b ) + λ 2 ∥ w ∥ 2 J_{\text{reg}} = J(\mathbf{w}, b) + \frac{\lambda}{2} \|\mathbf{w}\|^2 Jreg=J(w,b)+2λw2
      梯度更新:
      w ← w − η ( ∇ w J + λ w ) \mathbf{w} \leftarrow \mathbf{w} - \eta \left( \nabla_{\mathbf{w}} J + \lambda \mathbf{w} \right) wwη(wJ+λw)
  2. 特征工程
    添加多项式特征 x 1 2 , x 2 2 , x 1 x 2 x_1^2, x_2^2, x_1x_2 x12,x22,x1x2等,将数据映射到高维空间。

  3. 核方法
    通过核技巧隐式映射到高维空间(需结合其他模型如SVM)。


六、总结

逻辑回归通过概率建模解决二分类问题,代码简洁高效,但需注意其线性假设的限制。通过正则化、特征工程等手段可显著提升模型性能。


http://www.kler.cn/a/549372.html

相关文章:

  • 3.【BUUCTF】[GKCTF 2021]easycms
  • pptx2md - 将PPT文件转换成Markdown
  • linux中tar命令详解
  • 002 第一个python程序
  • 如何在 GitHub 上写博客
  • EasyRTC嵌入式WebRTC视频通话SDK支持Web浏览器、Linux、ARM、Android、iOS
  • 如何使用 DeepSeek R1 构建开源 ChatGPT Operator 替代方案
  • wordpress get_footer();与wp_footer();的区别的关系
  • Docker拉不下来镜像问题解决法案
  • 我们来学HTTP/TCP -- 另辟蹊径从响应入手
  • opencascade 获取edge起始点 会出现终点与实际不同的情况
  • LC-随机链表的复制、排序链表、合并K个升序链表、LRU缓存
  • 前端(JS进阶)学习笔记(CLASS 2):构造函数数据常用函数
  • C语言之easyX
  • 基于 Python 和 OpenCV 的酒店客房入侵检测系统设计与实现
  • 本地大模型编程实战(17)RAG(Retrieval Augmented Generation,检索增强生成)(1)
  • 使用maven-archetype制作项目脚手架
  • 栈与队列(C语言版)
  • Macos机器hosts文件便捷修改工具——SwitchHosts
  • C#: String s = new String(“Hello“)无法编译?编程语言字符集有两个?为什么这种变量名“\u0061\u0062”都能编译通过?