当前位置: 首页 > article >正文

本地DeepSeek模型GGUF文件转换为PyTorch格式

        接前文,我们在本地Windows系统上,基于GGUF文件部署了DeepSeek模型(DeepSeek-R1-Distill-Qwen-1.5B.gguf版本),但是GGUF是已经量化的版本,我们除了对其进行微调之外,无法对其训练,那么还有没有其他办法对本地的GGUF部署的DeepSeek模型进行训练呢?今天我们就反其道而行之,将GGUF文件转换为PyTorch格式再训练。

        前提:已经部署好了DeepSeek,可以看我的文章:个人windows电脑上安装DeepSeek大模型(完整详细可用教程)_deepseek-r1-distill-qwen-1.5b-gguf-CSDN博客,或是下载有了GGUF文件,可以到我CSDN上下载。

一、对GGUF文件转换为PyTorch格式的思考

        首先,需要确认是否已经有现成的工具或者脚本可以完成这个转换。

        接下来,我应该了解GGUF文件的结构。GGUF是一个二进制格式,包含模型的参数、架构信息和其他元数据。而PyTorch模型通常由模型类定义的结构和state_dict组成,所以转换的关键在于读取GGUF中的参数,并将它们正确地加载到对应的PyTorch模型中。可能需要先加载GGUF文件,读取其中的权重,然后创建一个对应的PyTorch模型结构,并将权重一一对应地填入。所以需要先解决如何读取GGUF文件里面的内容,由什么组成。

        我需要考虑模型的架构是否一致。比如,如果是LLAMA模型的GGUF文件,那么对应的PyTorch模型应该是Hugging Face的LLaMA实现。这时候可能需要确保两者的层结构、参数命名是否匹配。例如,GGUF中的参数名称可能和Hugging Face中的名称不同,需要做映射。这一步可能需要手动编写一些代码来处理参数名称的转换。DeepSeek模型的结构、参数是什么?PyTorch模型的结构、参数是什么?DeepSeek模型的GGUF文件如何对应PyTorch模型

        另外,还需要注意数据类型的问题。GGUF中的参数可能以某种量化格式存储,比如4位或8位整数,而PyTorch模型通常使用32位或16位浮点数。如果是量化过的GGUF模型,转换到PyTorch可能需要反量化,这可能会影响模型的大小和计算效率。但如果是非量化的原始模型,可能可以直接转换。

        以上过程可能涉及到的步骤:

1. 安装必要的库,比如llama-cpp-python,用于读取GGUF文件。

2. 加载GGUF模型,获取其中的权重参数。

3. 创建对应的PyTorch模型结构,例如使用Hugging Face的AutoModelForCausalLM。

4. 将GGUF中的参数转换为PyTorch格式,并加载到模型中。

5. 保存PyTorch模型为标准的格式,如PyTorch的pt文件或上传到Hugging Face Hub。

        可能的难点在于参数名称的映射和格式转换。GGUF中的参数可能以特定的层次结构存储,而PyTorch模型的结构可能不同,需要逐一对应。此外,如果有量化参数,处理起来可能更复杂。因为某些框架可能存储的权重是转置过的。比如,假设GGUF中的某个权重矩阵是(input_dim, output_dim),而PyTorch中对应的线性层权重是(output_dim, input_dim),这时候需要转置。

        总结起来,可能需要考虑的问题有:

1.需要注意不同层的参数名称匹配,需要编写一个映射字典,将GGUF中的参数名称转换为Hugging Face模型的参数名称。

2. 可能需要调整参数的形状或数据类型。

3. 可能需要处理张量的转置。

4. 如果GGUF模型是量化的可能需要反量化。

        根据以上分析得出,转换的具体步骤

1. 解析GGUF文件的元数据以确定模型配置,确定GGUF模型对应的PyTorch模型架构(例如LLaMA)。

2. 安装必要的库,如llama-cpp-python,transformers,torch等。

3. 编写或找到能够读取GGUF文件并提取权重的代码。解析GGUF文件的元数据,确定模型的架构参数(如层数、隐藏层大小、注意力头数等)

4. 根据这些元数据,创建对应的PyTorch模型实例。

5. 遍历GGUF文件中的每个张量,将其转换为PyTorch张量,映射参数名称,调整形状和数据类型,加载到PyTorch模型中。

6. 验证转换后的模型是否能正常推理。

7. 保存PyTorch模型。

二、DeepSeek-R1-Distill-Qwen-1.5B.gguf量化版本分析

        要将DeepSeek模型的GGUF文件转换成Pytorch格式,就要先了解DeepSeek-R1-Distill-Qwen-1.5B是什么,又有哪些版本。DeepSeek-R1-Distill-Qwen-1.5B是一个通过蒸馏技术从DeepSeek-R1模型中提取的紧凑高效版本,专注于数学和逻辑推理任务。该模型提供了多种量化版本,以满足不同的性能和资源需求。

1.量化版本概述

量化类型

文件大小

描述

推荐程度

f32

7.11GB

全精度浮点权重,最高质量,不推荐用于资源受限环境

不推荐

f16

3.56GB

半精度浮点权重,质量接近 f32,资源占用减半

可选

Q8_0

1.89GB

极高精度量化,质量几乎无损,但文件较大

不推荐

Q6_K_L

1.58GB

使用Q8_0量化嵌入和输出权重,非常高质量,近乎完美

推荐

Q6_K

1.46GB

非常高质量,近乎完美

推荐

Q5_K_L

1.43GB

使用 Q8_0 量化嵌入和输出权重,高质量

推荐

Q5_K_M

1.29GB

高质量,推荐

推荐

Q4_K_L

1.29GB

使用 Q8_0 量化嵌入和输出权重,质量良好

推荐

Q5_K_S

1.26GB

高质量,推荐

推荐

Q3_K_XL

1.18GB

较低质量,但适合低内存环境

可选

Q4_1

1.16GB

与 Q4_K_S 性能相似,但在 Apple 硬件上更节能

可选

Q4_K_M

1.12GB

质量良好,适用于大多数场景

推荐

Q4_K_S

1.07GB

质量略有下降,但节省更多空间

推荐

Q4_0

1.07GB

遗留格式,支持 ARM 和 AVX CPU 推理

可选

IQ4_NL

1.07GB

与 IQ4_XS 类似,但略大,支持 ARM CPU 推理

可选

IQ4_XS

1.02GB

质量尚可,体积小,性能与 Q4_K_S 类似

推荐


http://www.kler.cn/a/551605.html

相关文章:

  • 动态规划算法篇:枚举的艺术
  • 嵌入式八股文(四)计算机网络篇
  • uniapp编写微信小程序:project.config.json: libVersion 字段需为 string, string
  • java项目打包成docker镜像步骤
  • LeetCode 热题 100_分割回文串(61_131_中等_C++)(递归(回溯))(回溯问题使用类成员变量还是函数传参)
  • 人工智能基础之数学基础:01高等数学基础
  • 小米电视维修记录 2025/2/18
  • Spark ,虚拟机基本命令(1)
  • 【Modelsim】warning:(vsim-WLF-5000) WLF file currently in use:vsim.wlf
  • R语言用逻辑回归贝叶斯层次对本垒打数据与心脏移植数据后验预测检验模拟推断及先验影响分析|附数据代码...
  • Mysql-事务日志undo log
  • React实现自动滚动表格
  • 【Python】实时将数据写入Excel
  • 分布式同步锁:原理、实现与应用
  • 国产编辑器EverEdit - 自动完成功能的用法
  • 蓝桥杯单片机基础部分——单片机介绍部分
  • 安装torch-geometric库,踩坑!
  • Ubuntu Linux运维实战指南4_文件系统基础知识
  • git自动化之.netrc配置
  • 【云安全】云原生- K8S 污点横移