当前位置: 首页 > article >正文

开源模型应用落地-DeepSeek-R1-Distill-Qwen-7B-LoRA微调-LLaMA-Factory-单机单卡-V100(一)

一、前言

    如今,大语言模型领域热闹非凡,各种模型不断涌现。DeepSeek-R1-Distill-Qwen-7B 模型凭借其出色的效果和性能,吸引了众多开发者的目光。而 LLaMa-Factory 作为强大的微调工具,能让模型更好地满足个性化需求。

    在本篇中,将深入探讨如何运用 LLaMa-FactoryDeepSeek-R1-Distill-Qwen-7B 模型进行微调,探索如何通过微调,让模型更好地为我们所用。


二、术语介绍

2.1. LoRA微调

    LoRA (Low-Rank Adaptation) 用于微调大型语言模型 (LLM)。  是一种有效的自适应策略,它不会引入额外的推理延迟,并在保持模型质量的同时显着减少下游任务的可训练参数数量。

2.2. 参数高效微调(PEFT) 

    仅微调少量 (额外) 模型参数,同时冻结预训练 LLM 的大部分参数,从而大大降低了计算和存储成本。

2.3. LLaMA-Factory

    是一个与 LLaMA(Large Language Model Meta AI)相关的项目,旨在为用户提供一种简化和优化的方式来训练、微调和部署大型语言模型。该工具通常包括一系列功能,如数据处理、模型配置、训练监控等,以帮助研究人员和开发者更高效地使用 LLaMA 模型。

    LLaMA-Factory支持的模型列表:

2.4. DeepSeek-R1-Distill-Qwen-7B

    是一个由DeepSeek开发的模型,它是通过蒸馏技术将Qwen-7B大型模型的一部分知识精华提取出来,以适应更小型的模型需求。


三、前置条件

 3.1. 基础环境及前置条件

     1. 操作系统:centos7

     2. NVIDIA Tesla V100 32GB   CUDA Version: 12.2 

     3. 提前下载好DeepSeek-R1-Distill-Qwen-7B模型         

 通过以下两个地址进行下载,优先推荐魔搭        

huggingface:

https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B/tree/main

ModelScope:

魔搭社区

 按需选择SDK或者Git方式下载

  使用git-lfs方式下载示例:

3.2. Anaconda安装

1、Update System
	sudo yum update -y
	sudo yum upgrade -y
	
2、Download Anaconda
	wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh
	
3、Verify Data Integrity
	sha256sum Anaconda3-2022.10-Linux-x86_64.sh
	
4、Run Anaconda Installation Script
	bash Anaconda3-2022.10-Linux-x86_64.sh
	
	安装目录:/opt/anaconda3
	
	注:安装位置可以在执行安装脚本的时候直接指定,可以这样修改执行内容
	bash Anaconda3-2022.10-Linux-x86_64.sh -p /opt/anaconda3
	
	Do you wish the installer to initialize Anaconda3 by running conda init?
	yes
	
	如果没有执行初始化,可以执行:/opt/anaconda3/bin/conda init
	
	注:初始化时,anaconda将配置写入了~/.bashrc 文件,直接执行
	source ~/.bashrc
	
5、Verify Installation
	conda --version
	
6、配置镜像源
	conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
	conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
	conda config --set show_channel_urls yes

3.3.下载LLaMA-Factory

方式一:直接下载

地址:GitHub - hiyouga/LLaMA-Factory: Unified Efficient Fine-Tuning of 100+ LLMs & VLMs (ACL 2024)

方式二:使用git克隆项目

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git

下载好的项目放置在/data/service目录下

3.4. 安装依赖

conda create --name llama_factory  python=3.10
conda activate llama_factory
cd /data/service/LLaMA-Factory
pip install -e ".[torch,metrics]" -i https://pypi.tuna.tsinghua.edu.cn/simple

  PS:软硬件要求


四、技术实现

4.1.数据准备

有两种格式选择,包括alpaca和sharegpt

alpaca示例格式:

[
  {
    "instruction": "人类指令(必填)",
    "input": "人类输入(选填)",
    "output": "模型回答(必填)",
    "system": "系统提示词(选填)",
    "history": [
      ["第一轮指令(选填)", "第一轮回答(选填)"],
      ["第二轮指令(选填)", "第二轮回答(选填)"]
    ]
  }
]

对于上述格式的数据,dataset_info.json 中的数据集描述应为:

"数据集名称": {
  "file_name": "data.json",
  "columns": {
    "prompt": "instruction",
    "query": "input",
    "response": "output",
    "system": "system",
    "history": "history"
  }
}

sharegpt示例格式:

  1. 相比 alpaca 格式的数据集,sharegpt 格式支持更多的角色种类,例如 human、gpt、observation、function 等等。它们构成一个对象列表呈现在 conversations 列中。
  2. 注意其中 human 和 observation 必须出现在奇数位置,gpt 和 function 必须出现在偶数位置。
[
  {
    "conversations": [
      {
        "from": "human",
        "value": "人类指令"
      },
      {
        "from": "function_call",
        "value": "工具参数"
      },
      {
        "from": "observation",
        "value": "工具结果"
      },
      {
        "from": "gpt",
        "value": "模型回答"
      }
    ],
    "system": "系统提示词(选填)",
    "tools": "工具描述(选填)"
  }
]

对于上述格式的数据,dataset_info.json 中的数据集描述应为:

"数据集名称": {
  "file_name": "data.json",
  "formatting": "sharegpt",
  "columns": {
    "messages": "conversations",
    "system": "system",
    "tools": "tools"
  }
}

以下采用sharegpt格式,在/data/service/LLaMA-Factory/data/目录上传测试数据,文件名为ds_zh_demo.json,测试数据示例如下:

[
	{
		"conversations": [
			{
				"from": "user",
				"value": "什么是深度学习,它与传统机器学习有什么区别?"
			},
			{
				"from": "assistant",
				"value": "深度学习是机器学习的一个子领域,使用人工神经网络,尤其是深度神经网络,来进行数据建模。与传统机器学习方法相比,深度学习能够自动提取特征,无需手动特征工程,适合处理大规模数据集和复杂模式。"
			}
		]
	},
	{
		"conversations": [
			{
				"from": "user",
				"value": "如何评估一个机器学习模型的性能?"
			},
			{
				"from": "assistant",
				"value": "评估机器学习模型的性能通常使用多种指标,包括准确率、精确率、召回率、F1-score、ROC曲线和AUC值。选择合适的指标取决于具体任务的性质和目标。"
			}
		]
	}
]

修改数据集描述文件dataset_info.json

vi /data/service/LLaMA-Factory/data/dataset_info.json

增加以下内容:

"ds_zh_demo": {
	"file_name": "ds_zh_demo.json",
	"formatting": "sharegpt",
	"columns": {
	  "messages": "conversations"
	},
	"tags": {
	  "role_tag": "from",
	  "content_tag": "value",
	  "user_tag": "user",
	  "assistant_tag": "assistant"
	}
}

4.2.配置文件准备

1) 备份原有的配置文件

cp /data/service/LLaMA-Factory/examples/train_lora/llama3_lora_sft.yaml /data/service/LLaMA-Factory/examples/train_lora/llama3_lora_sft.yaml.bak

2) 创建新的配置文件

mv /data/service/LLaMA-Factory/examples/train_lora/llama3_lora_sft.yaml /data/service/LLaMA-Factory/examples/train_lora/ds_qwen7b_lora_sft.yaml

3) 修改配置文件内容

vi /data/service/LLaMA-Factory/examples/train_lora/ds_qwen7b_lora_sft.yaml

  内容如下:

### model
model_name_or_path: /data/model/DeepSeek-R1-Distill-Qwen-7B
trust_remote_code: true

### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all

### dataset
dataset: ds_zh_demo
template: deepseek3
cutoff_len: 4096
max_samples: 4019
overwrite_cache: true
preprocessing_num_workers: 16

### output
output_dir: /data/model/sft/DeepSeek-R1-Distill-Qwen-7B
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true

### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 1.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000

### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

  需要关注以下参数

  1. model_name_or_path:模型路径
  2. dataset:数据集名称,对应上面声明的qwen_zh_demo
  3. template:模版
  4. cutoff_len:控制输入序列的最大长度
  5. output_dir:微调后权重保存路径
  6. gradient_accumulation_steps:梯度累积的步数,GPU资源不足时需要减少该值
  7. num_train_epochs:训练的轮数

4.3.启动微调

conda activate llama_factory
cd /data/service/LLaMA-Factory
llamafactory-cli train /data/service/LLaMA-Factory/examples/train_lora/ds_qwen7b_lora_sft.yaml

# 后台运行
nohup llamafactory-cli train /data/service/LLaMA-Factory/examples/train_lora/ds_qwen7b_lora_sft.yaml > output.log 2>&1 &

4.4.微调结果

[INFO|configuration_utils.py:1052] 2025-02-18 16:39:55,400 >> loading configuration file /data/model/DeepSeek-R1-Distill-Qwen-7B/generation_config.json
[INFO|configuration_utils.py:1099] 2025-02-18 16:39:55,400 >> Generate config GenerationConfig {
  "bos_token_id": 151646,
  "do_sample": true,
  "eos_token_id": 151643,
  "temperature": 0.6,
  "top_p": 0.95
}

[INFO|2025-02-18 16:39:55] llamafactory.model.model_utils.checkpointing:157 >> Gradient checkpointing enabled.
[INFO|2025-02-18 16:39:55] llamafactory.model.model_utils.attention:157 >> Using torch SDPA for faster training and inference.
[INFO|2025-02-18 16:39:55] llamafactory.model.adapter:157 >> Upcasting trainable params to float32.
[INFO|2025-02-18 16:39:55] llamafactory.model.adapter:157 >> Fine-tuning method: LoRA
[INFO|2025-02-18 16:39:55] llamafactory.model.model_utils.misc:157 >> Found linear modules: down_proj,o_proj,up_proj,k_proj,v_proj,q_proj,gate_proj
[INFO|2025-02-18 16:39:55] llamafactory.model.loader:157 >> trainable params: 20,185,088 || all params: 7,635,801,600 || trainable%: 0.2643
Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
[INFO|trainer.py:667] 2025-02-18 16:39:55,807 >> Using auto half precision backend
[INFO|trainer.py:2243] 2025-02-18 16:39:56,634 >> ***** Running training *****
[INFO|trainer.py:2244] 2025-02-18 16:39:56,634 >>   Num examples = 3,617
[INFO|trainer.py:2245] 2025-02-18 16:39:56,634 >>   Num Epochs = 1
[INFO|trainer.py:2246] 2025-02-18 16:39:56,634 >>   Instantaneous batch size per device = 1
[INFO|trainer.py:2249] 2025-02-18 16:39:56,634 >>   Total train batch size (w. parallel, distributed & accumulation) = 8
[INFO|trainer.py:2250] 2025-02-18 16:39:56,634 >>   Gradient Accumulation steps = 8
[INFO|trainer.py:2251] 2025-02-18 16:39:56,634 >>   Total optimization steps = 452
[INFO|trainer.py:2252] 2025-02-18 16:39:56,638 >>   Number of trainable parameters = 20,185,088
  0%|          | 0/452 [00:00<?, ?it/s]/usr/local/miniconda3/envs/llama_factory/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
  with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs):  # type: ignore[attr-defined]
100%|██████████| 452/452 [4:06:28<00:00, 31.87s/it][INFO|trainer.py:3705] 2025-02-18 20:46:24,795 >> Saving model checkpoint to /data/model/sft/DeepSeek-R1-Distill-Qwen-7B/checkpoint-452
[INFO|configuration_utils.py:670] 2025-02-18 20:46:24,819 >> loading configuration file /data/model/DeepSeek-R1-Distill-Qwen-7B/config.json
[INFO|configuration_utils.py:739] 2025-02-18 20:46:24,820 >> Model config Qwen2Config {
  "architectures": [
    "Qwen2ForCausalLM"
  ],
  "attention_dropout": 0.0,
  "bos_token_id": 151643,
  "eos_token_id": 151643,
  "hidden_act": "silu",
  "hidden_size": 3584,
  "initializer_range": 0.02,
  "intermediate_size": 18944,
  "max_position_embeddings": 131072,
  "max_window_layers": 28,
  "model_type": "qwen2",
  "num_attention_heads": 28,
  "num_hidden_layers": 28,
  "num_key_value_heads": 4,
  "rms_norm_eps": 1e-06,
  "rope_scaling": null,
  "rope_theta": 10000,
  "sliding_window": null,
  "tie_word_embeddings": false,
  "torch_dtype": "bfloat16",
  "transformers_version": "4.45.0",
  "use_cache": true,
  "use_mrope": false,
  "use_sliding_window": false,
  "vocab_size": 152064
}

[INFO|tokenization_utils_base.py:2649] 2025-02-18 20:46:25,042 >> tokenizer config file saved in /data/model/sft/DeepSeek-R1-Distill-Qwen-7B/checkpoint-452/tokenizer_config.json
[INFO|tokenization_utils_base.py:2658] 2025-02-18 20:46:25,043 >> Special tokens file saved in /data/model/sft/DeepSeek-R1-Distill-Qwen-7B/checkpoint-452/special_tokens_map.json
[INFO|trainer.py:2505] 2025-02-18 20:46:25,377 >> 

Training completed. Do not forget to share your model on huggingface.co/models =)


100%|██████████| 452/452 [4:06:28<00:00, 32.72s/it]
[INFO|trainer.py:3705] 2025-02-18 20:46:25,379 >> Saving model checkpoint to /data/model/sft/DeepSeek-R1-Distill-Qwen-7B
[INFO|configuration_utils.py:670] 2025-02-18 20:46:25,401 >> loading configuration file /data/model/DeepSeek-R1-Distill-Qwen-7B/config.json
[INFO|configuration_utils.py:739] 2025-02-18 20:46:25,401 >> Model config Qwen2Config {
  "architectures": [
    "Qwen2ForCausalLM"
  ],
  "attention_dropout": 0.0,
  "bos_token_id": 151643,
  "eos_token_id": 151643,
  "hidden_act": "silu",
  "hidden_size": 3584,
  "initializer_range": 0.02,
  "intermediate_size": 18944,
  "max_position_embeddings": 131072,
  "max_window_layers": 28,
  "model_type": "qwen2",
  "num_attention_heads": 28,
  "num_hidden_layers": 28,
  "num_key_value_heads": 4,
  "rms_norm_eps": 1e-06,
  "rope_scaling": null,
  "rope_theta": 10000,
  "sliding_window": null,
  "tie_word_embeddings": false,
  "torch_dtype": "bfloat16",
  "transformers_version": "4.45.0",
  "use_cache": true,
  "use_mrope": false,
  "use_sliding_window": false,
  "vocab_size": 152064
}

[INFO|tokenization_utils_base.py:2649] 2025-02-18 20:46:25,556 >> tokenizer config file saved in /data/model/sft/DeepSeek-R1-Distill-Qwen-7B/tokenizer_config.json
[INFO|tokenization_utils_base.py:2658] 2025-02-18 20:46:25,556 >> Special tokens file saved in /data/model/sft/DeepSeek-R1-Distill-Qwen-7B/special_tokens_map.json
{'loss': 3.6592, 'grad_norm': 0.38773563504219055, 'learning_rate': 2.173913043478261e-05, 'epoch': 0.02}
{'loss': 3.667, 'grad_norm': 0.698821485042572, 'learning_rate': 4.347826086956522e-05, 'epoch': 0.04}
{'loss': 3.4784, 'grad_norm': 0.41371676325798035, 'learning_rate': 6.521739130434783e-05, 'epoch': 0.07}
{'loss': 3.2962, 'grad_norm': 0.4966348111629486, 'learning_rate': 8.695652173913044e-05, 'epoch': 0.09}
{'loss': 3.0158, 'grad_norm': 0.333425909280777, 'learning_rate': 9.997605179330019e-05, 'epoch': 0.11}
{'loss': 3.2221, 'grad_norm': 0.3786776065826416, 'learning_rate': 9.970689785771798e-05, 'epoch': 0.13}
{'loss': 2.8439, 'grad_norm': 0.3683229386806488, 'learning_rate': 9.914027086842322e-05, 'epoch': 0.15}
{'loss': 3.0528, 'grad_norm': 0.42745739221572876, 'learning_rate': 9.82795618288397e-05, 'epoch': 0.18}
{'loss': 2.9092, 'grad_norm': 0.45462721586227417, 'learning_rate': 9.712992168898436e-05, 'epoch': 0.2}
{'loss': 3.1055, 'grad_norm': 0.5547119379043579, 'learning_rate': 9.56982305193869e-05, 'epoch': 0.22}
{'loss': 2.9412, 'grad_norm': 0.5830215811729431, 'learning_rate': 9.399305633701373e-05, 'epoch': 0.24}
{'loss': 2.7873, 'grad_norm': 0.5862609148025513, 'learning_rate': 9.202460382960448e-05, 'epoch': 0.27}
{'loss': 2.8255, 'grad_norm': 0.5828853845596313, 'learning_rate': 8.980465328528219e-05, 'epoch': 0.29}
{'loss': 2.6266, 'grad_norm': 0.6733331084251404, 'learning_rate': 8.734649009291585e-05, 'epoch': 0.31}
{'loss': 2.8745, 'grad_norm': 0.6904928684234619, 'learning_rate': 8.46648252351431e-05, 'epoch': 0.33}
{'loss': 2.8139, 'grad_norm': 0.7874809503555298, 'learning_rate': 8.177570724986628e-05, 'epoch': 0.35}
{'loss': 2.7818, 'grad_norm': 0.8345168232917786, 'learning_rate': 7.86964261870916e-05, 'epoch': 0.38}
{'loss': 2.7198, 'grad_norm': 0.8806198239326477, 'learning_rate': 7.544541013588645e-05, 'epoch': 0.4}
{'loss': 2.7231, 'grad_norm': 0.9481658935546875, 'learning_rate': 7.204211494069292e-05, 'epoch': 0.42}
{'loss': 2.7371, 'grad_norm': 0.9718573093414307, 'learning_rate': 6.850690776699573e-05, 'epoch': 0.44}
{'loss': 2.6862, 'grad_norm': 1.2056019306182861, 'learning_rate': 6.486094521315022e-05, 'epoch': 0.46}
{'loss': 2.4661, 'grad_norm': 1.200085163116455, 'learning_rate': 6.112604669781572e-05, 'epoch': 0.49}
{'loss': 2.4841, 'grad_norm': 1.1310691833496094, 'learning_rate': 5.732456388071247e-05, 'epoch': 0.51}
{'loss': 2.3755, 'grad_norm': 1.1279083490371704, 'learning_rate': 5.3479246898159063e-05, 'epoch': 0.53}
{'loss': 2.5552, 'grad_norm': 1.2654848098754883, 'learning_rate': 4.96131082139099e-05, 'epoch': 0.55}
{'loss': 2.6197, 'grad_norm': 1.3887016773223877, 'learning_rate': 4.574928490008264e-05, 'epoch': 0.58}
{'loss': 2.3773, 'grad_norm': 1.3009178638458252, 'learning_rate': 4.1910900172361764e-05, 'epoch': 0.6}
{'loss': 2.3881, 'grad_norm': 1.346793532371521, 'learning_rate': 3.812092500812646e-05, 'epoch': 0.62}
{'loss': 2.4821, 'grad_norm': 1.7273674011230469, 'learning_rate': 3.440204067565511e-05, 'epoch': 0.64}
{'loss': 2.3563, 'grad_norm': 1.529177188873291, 'learning_rate': 3.077650299710653e-05, 'epoch': 0.66}
{'loss': 2.1308, 'grad_norm': 1.5957469940185547, 'learning_rate': 2.7266009157601224e-05, 'epoch': 0.69}
{'loss': 2.1709, 'grad_norm': 1.4444897174835205, 'learning_rate': 2.3891567857490372e-05, 'epoch': 0.71}
{'loss': 2.275, 'grad_norm': 1.5686719417572021, 'learning_rate': 2.067337358489085e-05, 'epoch': 0.73}
{'loss': 2.2075, 'grad_norm': 1.5931408405303955, 'learning_rate': 1.7630685760908622e-05, 'epoch': 0.75}
{'loss': 2.1727, 'grad_norm': 1.7681787014007568, 'learning_rate': 1.4781713480810184e-05, 'epoch': 0.77}
{'loss': 2.3562, 'grad_norm': 1.742925763130188, 'learning_rate': 1.2143506540914128e-05, 'epoch': 0.8}
{'loss': 2.1187, 'grad_norm': 1.6716198921203613, 'learning_rate': 9.731853403356705e-06, 'epoch': 0.82}
{'loss': 2.2564, 'grad_norm': 1.915489912033081, 'learning_rate': 7.561186709365653e-06, 'epoch': 0.84}
{'loss': 2.261, 'grad_norm': 2.132519245147705, 'learning_rate': 5.644496906502233e-06, 'epoch': 0.86}
{'loss': 2.1632, 'grad_norm': 1.591231107711792, 'learning_rate': 3.9932545067728366e-06, 'epoch': 0.88}
{'loss': 2.1266, 'grad_norm': 1.584917664527893, 'learning_rate': 2.6173414408598827e-06, 'epoch': 0.91}
{'loss': 2.2944, 'grad_norm': 1.5982666015625, 'learning_rate': 1.524991919285429e-06, 'epoch': 0.93}
{'loss': 2.3799, 'grad_norm': 2.1475727558135986, 'learning_rate': 7.227431544266194e-07, 'epoch': 0.95}
{'loss': 2.1196, 'grad_norm': 1.6714484691619873, 'learning_rate': 2.153962382888841e-07, 'epoch': 0.97}
{'loss': 2.1427, 'grad_norm': 1.7334465980529785, 'learning_rate': 5.987410165758656e-09, 'epoch': 1.0}
{'train_runtime': 14788.7396, 'train_samples_per_second': 0.245, 'train_steps_per_second': 0.031, 'train_loss': 2.6206856934370193, 'epoch': 1.0}
***** train metrics *****
  epoch                    =      0.9997
  total_flos               = 100517734GF
  train_loss               =      2.6207
  train_runtime            =  4:06:28.73
  train_samples_per_second =       0.245
  train_steps_per_second   =       0.031
Figure saved at: /data/model/sft/DeepSeek-R1-Distill-Qwen-7B/training_loss.png
[WARNING|2025-02-18 20:46:25] llamafactory.extras.ploting:162 >> No metric eval_loss to plot.
[WARNING|2025-02-18 20:46:25] llamafactory.extras.ploting:162 >> No metric eval_accuracy to plot.
[INFO|trainer.py:4021] 2025-02-18 20:46:25,781 >> 
***** Running Evaluation *****
[INFO|trainer.py:4023] 2025-02-18 20:46:25,781 >>   Num examples = 402
[INFO|trainer.py:4026] 2025-02-18 20:46:25,781 >>   Batch size = 1
100%|██████████| 402/402 [09:03<00:00,  1.35s/it]t]
[INFO|modelcard.py:449] 2025-02-18 20:55:30,409 >> Dropping the following result as it does not have all the necessary fields:
{'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
***** eval metrics *****
  epoch                   =     0.9997
  eval_loss               =     2.2648
  eval_runtime            = 0:09:04.62
  eval_samples_per_second =      0.738
  eval_steps_per_second   =      0.738

生成的权重文件:


五、附带说明

5.1. dataset_info.json

包含了所有可用的数据集。如果您希望使用自定义数据集,请务必在 dataset_info.json 文件中添加数据集描述,并通过修改 dataset: 数据集名称 配置来使用数据集。

"数据集名称": {
  "hf_hub_url": "Hugging Face 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
  "ms_hub_url": "ModelScope 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
  "script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略 file_name)",
  "file_name": "该目录下数据集文件夹或文件的名称(若上述参数未指定,则此项必需)",
  "formatting": "数据集格式(可选,默认:alpaca,可以为 alpaca 或 sharegpt)",
  "ranking": "是否为偏好数据集(可选,默认:False)",
  "subset": "数据集子集的名称(可选,默认:None)",
  "split": "所使用的数据集切分(可选,默认:train)",
  "folder": "Hugging Face 仓库的文件夹名称(可选,默认:None)",
  "num_samples": "该数据集所使用的样本数量。(可选,默认:None)",
  "columns(可选)": {
    "prompt": "数据集代表提示词的表头名称(默认:instruction)",
    "query": "数据集代表请求的表头名称(默认:input)",
    "response": "数据集代表回答的表头名称(默认:output)",
    "history": "数据集代表历史对话的表头名称(默认:None)",
    "messages": "数据集代表消息列表的表头名称(默认:conversations)",
    "system": "数据集代表系统提示的表头名称(默认:None)",
    "tools": "数据集代表工具描述的表头名称(默认:None)",
    "images": "数据集代表图像输入的表头名称(默认:None)",
    "videos": "数据集代表视频输入的表头名称(默认:None)",
    "audios": "数据集代表音频输入的表头名称(默认:None)",
    "chosen": "数据集代表更优回答的表头名称(默认:None)",
    "rejected": "数据集代表更差回答的表头名称(默认:None)",
    "kto_tag": "数据集代表 KTO 标签的表头名称(默认:None)"
  },
  "tags(可选,用于 sharegpt 格式)": {
    "role_tag": "消息中代表发送者身份的键名(默认:from)",
    "content_tag": "消息中代表文本内容的键名(默认:value)",
    "user_tag": "消息中代表用户的 role_tag(默认:human)",
    "assistant_tag": "消息中代表助手的 role_tag(默认:gpt)",
    "observation_tag": "消息中代表工具返回结果的 role_tag(默认:observation)",
    "function_tag": "消息中代表工具调用的 role_tag(默认:function_call)",
    "system_tag": "消息中代表系统提示的 role_tag(默认:system,会覆盖 system column)"
  }
}

5.2. 自定义对话模版

在 template.py 中添加自己的对话模板。

https://github.com/hiyouga/LLaMA-Factory/blob/main/src/llamafactory/data/template.py

# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Type, Union

from typing_extensions import override

from ..extras import logging
from ..extras.misc import check_version
from .data_utils import Role
from .formatter import EmptyFormatter, FunctionFormatter, StringFormatter, ToolFormatter
from .mm_plugin import get_mm_plugin


if TYPE_CHECKING:
    from transformers import PreTrainedTokenizer

    from ..hparams import DataArguments
    from .formatter import SLOTS, Formatter
    from .mm_plugin import BasePlugin
    from .tool_utils import FunctionCall


logger = logging.get_logger(__name__)


@dataclass
class Template:
    format_user: "Formatter"
    format_assistant: "Formatter"
    format_system: "Formatter"
    format_function: "Formatter"
    format_observation: "Formatter"
    format_tools: "Formatter"
    format_prefix: "Formatter"
    default_system: str
    stop_words: List[str]
    thought_words: Tuple[str, str]
    efficient_eos: bool
    replace_eos: bool
    replace_jinja_template: bool
    mm_plugin: "BasePlugin"

    def encode_oneturn(
        self,
        tokenizer: "PreTrainedTokenizer",
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
    ) -> Tuple[List[int], List[int]]:
        r"""
        Returns a single pair of token ids representing prompt and response respectively.
        """
        encoded_messages = self._encode(tokenizer, messages, system, tools)
        prompt_ids = []
        for encoded_ids in encoded_messages[:-1]:
            prompt_ids += encoded_ids

        response_ids = encoded_messages[-1]
        return prompt_ids, response_ids

    def encode_multiturn(
        self,
        tokenizer: "PreTrainedTokenizer",
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
    ) -> List[Tuple[List[int], List[int]]]:
        r"""
        Returns multiple pairs of token ids representing prompts and responses respectively.
        """
        encoded_messages = self._encode(tokenizer, messages, system, tools)
        return [(encoded_messages[i], encoded_messages[i + 1]) for i in range(0, len(encoded_messages), 2)]

    def extract_tool(self, content: str) -> Union[str, List["FunctionCall"]]:
        r"""
        Extracts tool message.
        """
        return self.format_tools.extract(content)

    def get_stop_token_ids(self, tokenizer: "PreTrainedTokenizer") -> List[int]:
        r"""
        Returns stop token ids.
        """
        stop_token_ids = {tokenizer.eos_token_id}
        for token in self.stop_words:
            stop_token_ids.add(tokenizer.convert_tokens_to_ids(token))

        return list(stop_token_ids)

    def _convert_elements_to_ids(self, tokenizer: "PreTrainedTokenizer", elements: "SLOTS") -> List[int]:
        r"""
        Converts elements to token ids.
        """
        token_ids = []
        for elem in elements:
            if isinstance(elem, str):
                if len(elem) != 0:
                    token_ids += tokenizer.encode(elem, add_special_tokens=False)
            elif isinstance(elem, dict):
                token_ids += [tokenizer.convert_tokens_to_ids(elem.get("token"))]
            elif isinstance(elem, set):
                if "bos_token" in elem and tokenizer.bos_token_id is not None:
                    token_ids += [tokenizer.bos_token_id]
                elif "eos_token" in elem and tokenizer.eos_token_id is not None:
                    token_ids += [tokenizer.eos_token_id]
            else:
                raise ValueError(f"Input must be string, set[str] or dict[str, str], got {type(elem)}")

        return token_ids

    def _encode(
        self,
        tokenizer: "PreTrainedTokenizer",
        messages: Sequence[Dict[str, str]],
        system: Optional[str],
        tools: Optional[str],
    ) -> List[List[int]]:
        r"""
        Encodes formatted inputs to pairs of token ids.
        Turn 0: prefix + system + query        resp
        Turn t: query                          resp
        """
        system = system or self.default_system
        encoded_messages = []
        for i, message in enumerate(messages):
            elements = []

            if i == 0:
                elements += self.format_prefix.apply()
                if system or tools:
                    tool_text = self.format_tools.apply(content=tools)[0] if tools else ""
                    elements += self.format_system.apply(content=(system + tool_text))

            if message["role"] == Role.USER.value:
                elements += self.format_user.apply(content=message["content"], idx=str(i // 2))
            elif message["role"] == Role.ASSISTANT.value:
                elements += self.format_assistant.apply(content=message["content"])
            elif message["role"] == Role.OBSERVATION.value:
                elements += self.format_observation.apply(content=message["content"])
            elif message["role"] == Role.FUNCTION.value:
                elements += self.format_function.apply(content=message["content"])
            else:
                raise NotImplementedError("Unexpected role: {}".format(message["role"]))

            encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements))

        return encoded_messages

    @staticmethod
    def _add_or_replace_eos_token(tokenizer: "PreTrainedTokenizer", eos_token: str) -> None:
        r"""
        Adds or replaces eos token to the tokenizer.
        """
        is_added = tokenizer.eos_token_id is None
        num_added_tokens = tokenizer.add_special_tokens({"eos_token": eos_token})

        if is_added:
            logger.info_rank0(f"Add eos token: {tokenizer.eos_token}.")
        else:
            logger.info_rank0(f"Replace eos token: {tokenizer.eos_token}.")

        if num_added_tokens > 0:
            logger.warning_rank0("New tokens have been added, make sure `resize_vocab` is True.")

    def fix_special_tokens(self, tokenizer: "PreTrainedTokenizer") -> None:
        r"""
        Adds eos token and pad token to the tokenizer.
        """
        stop_words = self.stop_words
        if self.replace_eos:
            if not stop_words:
                raise ValueError("Stop words are required to replace the EOS token.")

            self._add_or_replace_eos_token(tokenizer, eos_token=stop_words[0])
            stop_words = stop_words[1:]

        if tokenizer.eos_token_id is None:
            self._add_or_replace_eos_token(tokenizer, eos_token="<|endoftext|>")

        if tokenizer.pad_token_id is None:
            tokenizer.pad_token = tokenizer.eos_token
            logger.info_rank0(f"Add pad token: {tokenizer.pad_token}")

        if stop_words:
            num_added_tokens = tokenizer.add_special_tokens(
                dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False
            )
            logger.info_rank0("Add {} to stop words.".format(",".join(stop_words)))
            if num_added_tokens > 0:
                logger.warning_rank0("New tokens have been added, make sure `resize_vocab` is True.")

    @staticmethod
    def _jinja_escape(content: str) -> str:
        r"""
        Escape single quotes in content.
        """
        return content.replace("'", r"\'")

    @staticmethod
    def _convert_slots_to_jinja(slots: "SLOTS", tokenizer: "PreTrainedTokenizer", placeholder: str = "content") -> str:
        r"""
        Converts slots to jinja template.
        """
        slot_items = []
        for slot in slots:
            if isinstance(slot, str):
                slot_pieces = slot.split("{{content}}")
                if slot_pieces[0]:
                    slot_items.append("'" + Template._jinja_escape(slot_pieces[0]) + "'")
                if len(slot_pieces) > 1:
                    slot_items.append(placeholder)
                    if slot_pieces[1]:
                        slot_items.append("'" + Template._jinja_escape(slot_pieces[1]) + "'")
            elif isinstance(slot, set):  # do not use {{ eos_token }} since it may be replaced
                if "bos_token" in slot and tokenizer.bos_token_id is not None:
                    slot_items.append("'" + tokenizer.bos_token + "'")
                elif "eos_token" in slot and tokenizer.eos_token_id is not None:
                    slot_items.append("'" + tokenizer.eos_token + "'")
            elif isinstance(slot, dict):
                raise ValueError("Dict is not supported.")

        return " + ".join(slot_items)

    def _get_jinja_template(self, tokenizer: "PreTrainedTokenizer") -> str:
        r"""
        Returns the jinja template.
        """
        prefix = self._convert_slots_to_jinja(self.format_prefix.apply(), tokenizer)
        system = self._convert_slots_to_jinja(self.format_system.apply(), tokenizer, placeholder="system_message")
        user = self._convert_slots_to_jinja(self.format_user.apply(), tokenizer)
        assistant = self._convert_slots_to_jinja(self.format_assistant.apply(), tokenizer)
        jinja_template = ""
        if prefix:
            jinja_template += "{{ " + prefix + " }}"

        if self.default_system:
            jinja_template += "{% set system_message = '" + self._jinja_escape(self.default_system) + "' %}"

        jinja_template += (
            "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}"
            "{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}"
            "{% if system_message is defined %}{{ " + system + " }}{% endif %}"
            "{% for message in loop_messages %}"
            "{% set content = message['content'] %}"
            "{% if message['role'] == 'user' %}"
            "{{ " + user + " }}"
            "{% elif message['role'] == 'assistant' %}"
            "{{ " + assistant + " }}"
            "{% endif %}"
            "{% endfor %}"
        )
        return jinja_template

    def fix_jinja_template(self, tokenizer: "PreTrainedTokenizer") -> None:
        r"""
        Replaces the jinja template in the tokenizer.
        """
        if tokenizer.chat_template is None or self.replace_jinja_template:
            try:
                tokenizer.chat_template = self._get_jinja_template(tokenizer)
            except ValueError as e:
                logger.info_rank0(f"Cannot add this chat template to tokenizer: {e}.")

    @staticmethod
    def _convert_slots_to_ollama(
        slots: "SLOTS", tokenizer: "PreTrainedTokenizer", placeholder: str = "content"
    ) -> str:
        r"""
        Converts slots to ollama template.
        """
        slot_items = []
        for slot in slots:
            if isinstance(slot, str):
                slot_pieces = slot.split("{{content}}")
                if slot_pieces[0]:
                    slot_items.append(slot_pieces[0])
                if len(slot_pieces) > 1:
                    slot_items.append("{{ " + placeholder + " }}")
                    if slot_pieces[1]:
                        slot_items.append(slot_pieces[1])
            elif isinstance(slot, set):  # do not use {{ eos_token }} since it may be replaced
                if "bos_token" in slot and tokenizer.bos_token_id is not None:
                    slot_items.append(tokenizer.bos_token)
                elif "eos_token" in slot and tokenizer.eos_token_id is not None:
                    slot_items.append(tokenizer.eos_token)
            elif isinstance(slot, dict):
                raise ValueError("Dict is not supported.")

        return "".join(slot_items)

    def _get_ollama_template(self, tokenizer: "PreTrainedTokenizer") -> str:
        r"""
        Returns the ollama template.
        """
        prefix = self._convert_slots_to_ollama(self.format_prefix.apply(), tokenizer)
        system = self._convert_slots_to_ollama(self.format_system.apply(), tokenizer, placeholder=".System")
        user = self._convert_slots_to_ollama(self.format_user.apply(), tokenizer, placeholder=".Content")
        assistant = self._convert_slots_to_ollama(self.format_assistant.apply(), tokenizer, placeholder=".Content")
        return (
            f"{prefix}{{{{ if .System }}}}{system}{{{{ end }}}}"
            f"""{{{{ range .Messages }}}}{{{{ if eq .Role "user" }}}}{user}"""
            f"""{{{{ else if eq .Role "assistant" }}}}{assistant}{{{{ end }}}}{{{{ end }}}}"""
        )

    def get_ollama_modelfile(self, tokenizer: "PreTrainedTokenizer") -> str:
        r"""
        Returns the ollama modelfile.

        TODO: support function calling.
        """
        modelfile = "# ollama modelfile auto-generated by llamafactory\n\n"
        modelfile += f'FROM .\n\nTEMPLATE """{self._get_ollama_template(tokenizer)}"""\n\n'

        if self.default_system:
            modelfile += f'SYSTEM """{self.default_system}"""\n\n'

        for stop_token_id in self.get_stop_token_ids(tokenizer):
            modelfile += f'PARAMETER stop "{tokenizer.convert_ids_to_tokens(stop_token_id)}"\n'

        modelfile += "PARAMETER num_ctx 4096\n"
        return modelfile


@dataclass
class Llama2Template(Template):
    @override
    def _encode(
        self,
        tokenizer: "PreTrainedTokenizer",
        messages: Sequence[Dict[str, str]],
        system: str,
        tools: str,
    ) -> List[List[int]]:
        system = system or self.default_system
        encoded_messages = []
        for i, message in enumerate(messages):
            elements = []

            system_text = ""
            if i == 0:
                elements += self.format_prefix.apply()
                if system or tools:
                    tool_text = self.format_tools.apply(content=tools)[0] if tools else ""
                    system_text = self.format_system.apply(content=(system + tool_text))[0]

            if message["role"] == Role.USER.value:
                elements += self.format_user.apply(content=system_text + message["content"])
            elif message["role"] == Role.ASSISTANT.value:
                elements += self.format_assistant.apply(content=message["content"])
            elif message["role"] == Role.OBSERVATION.value:
                elements += self.format_observation.apply(content=message["content"])
            elif message["role"] == Role.FUNCTION.value:
                elements += self.format_function.apply(content=message["content"])
            else:
                raise NotImplementedError("Unexpected role: {}".format(message["role"]))

            encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements))

        return encoded_messages

    def _get_jinja_template(self, tokenizer: "PreTrainedTokenizer") -> str:
        prefix = self._convert_slots_to_jinja(self.format_prefix.apply(), tokenizer)
        system_message = self._convert_slots_to_jinja(
            self.format_system.apply(), tokenizer, placeholder="system_message"
        )
        user_message = self._convert_slots_to_jinja(self.format_user.apply(), tokenizer)
        assistant_message = self._convert_slots_to_jinja(self.format_assistant.apply(), tokenizer)
        jinja_template = ""
        if prefix:
            jinja_template += "{{ " + prefix + " }}"

        if self.default_system:
            jinja_template += "{% set system_message = '" + self._jinja_escape(self.default_system) + "' %}"

        jinja_template += (
            "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}"
            "{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}"
            "{% for message in loop_messages %}"
            "{% if loop.index0 == 0 and system_message is defined %}"
            "{% set content = " + system_message + " + message['content'] %}"
            "{% else %}{% set content = message['content'] %}{% endif %}"
            "{% if message['role'] == 'user' %}"
            "{{ " + user_message + " }}"
            "{% elif message['role'] == 'assistant' %}"
            "{{ " + assistant_message + " }}"
            "{% endif %}"
            "{% endfor %}"
        )
        return jinja_template


TEMPLATES: Dict[str, "Template"] = {}


def register_template(
    name: str,
    format_user: Optional["Formatter"] = None,
    format_assistant: Optional["Formatter"] = None,
    format_system: Optional["Formatter"] = None,
    format_function: Optional["Formatter"] = None,
    format_observation: Optional["Formatter"] = None,
    format_tools: Optional["Formatter"] = None,
    format_prefix: Optional["Formatter"] = None,
    default_system: str = "",
    stop_words: Optional[Sequence[str]] = None,
    thought_words: Optional[Tuple[str, str]] = None,
    efficient_eos: bool = False,
    replace_eos: bool = False,
    replace_jinja_template: bool = False,
    mm_plugin: "BasePlugin" = get_mm_plugin(name="base"),
    template_class: Type["Template"] = Template,
) -> None:
    r"""
    Registers a chat template.

    To add the following chat template:
    ```
    <s><user>user prompt here
    <model>model response here</s>
    <user>user prompt here
    <model>model response here</s>
    ```

    The corresponding code should be:
    ```
    register_template(
        name="custom",
        format_user=StringFormatter(slots=["<user>{{content}}\n<model>"]),
        format_assistant=StringFormatter(slots=["{{content}}</s>\n"]),
        format_prefix=EmptyFormatter("<s>"),
    )
    ```
    """
    if name in TEMPLATES:
        raise ValueError(f"Template {name} already exists.")

    default_slots = ["{{content}}"] if efficient_eos else ["{{content}}", {"eos_token"}]
    default_user_formatter = StringFormatter(slots=["{{content}}"])
    default_assistant_formatter = StringFormatter(slots=default_slots)
    default_function_formatter = FunctionFormatter(slots=default_slots, tool_format="default")
    default_tool_formatter = ToolFormatter(tool_format="default")
    default_prefix_formatter = EmptyFormatter()
    TEMPLATES[name] = template_class(
        format_user=format_user or default_user_formatter,
        format_assistant=format_assistant or default_assistant_formatter,
        format_system=format_system or default_user_formatter,
        format_function=format_function or default_function_formatter,
        format_observation=format_observation or format_user or default_user_formatter,
        format_tools=format_tools or default_tool_formatter,
        format_prefix=format_prefix or default_prefix_formatter,
        default_system=default_system,
        stop_words=stop_words or [],
        thought_words=thought_words or ("<think>", "</think>"),
        efficient_eos=efficient_eos,
        replace_eos=replace_eos,
        replace_jinja_template=replace_jinja_template,
        mm_plugin=mm_plugin,
    )


def parse_template(tokenizer: "PreTrainedTokenizer") -> "Template":
    r"""
    Extracts a chat template from the tokenizer.
    """

    def find_diff(short_str: str, long_str: str) -> str:
        i, j = 0, 0
        diff = ""
        while i < len(short_str) and j < len(long_str):
            if short_str[i] == long_str[j]:
                i += 1
                j += 1
            else:
                diff += long_str[j]
                j += 1

        return diff

    prefix = tokenizer.decode(tokenizer.encode(""))

    messages = [{"role": "system", "content": "{{content}}"}]
    system_slot = tokenizer.apply_chat_template(messages, add_generation_prompt=False, tokenize=False)[len(prefix) :]

    messages = [{"role": "system", "content": ""}, {"role": "user", "content": "{{content}}"}]
    user_slot_empty_system = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
    user_slot_empty_system = user_slot_empty_system[len(prefix) :]

    messages = [{"role": "user", "content": "{{content}}"}]
    user_slot = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
    user_slot = user_slot[len(prefix) :]

    messages = [{"role": "user", "content": "{{content}}"}, {"role": "assistant", "content": "{{content}}"}]
    assistant_slot = tokenizer.apply_chat_template(messages, add_generation_prompt=False, tokenize=False)
    assistant_slot = assistant_slot[len(prefix) + len(user_slot) :]

    if len(user_slot) > len(user_slot_empty_system):
        default_system = find_diff(user_slot_empty_system, user_slot)
        sole_system = system_slot.replace("{{content}}", default_system, 1)
        user_slot = user_slot[len(sole_system) :]
    else:  # if defaut_system is empty, user_slot_empty_system will be longer than user_slot
        default_system = ""

    return Template(
        format_user=StringFormatter(slots=[user_slot]),
        format_assistant=StringFormatter(slots=[assistant_slot]),
        format_system=StringFormatter(slots=[system_slot]),
        format_function=FunctionFormatter(slots=[assistant_slot], tool_format="default"),
        format_observation=StringFormatter(slots=[user_slot]),
        format_tools=ToolFormatter(tool_format="default"),
        format_prefix=EmptyFormatter(slots=[prefix]) if prefix else EmptyFormatter(),
        default_system=default_system,
        stop_words=[],
        thought_words=("<think>", "</think>"),
        efficient_eos=False,
        replace_eos=False,
        replace_jinja_template=False,
        mm_plugin=get_mm_plugin(name="base"),
    )


def get_template_and_fix_tokenizer(tokenizer: "PreTrainedTokenizer", data_args: "DataArguments") -> "Template":
    r"""
    Gets chat template and fixes the tokenizer.
    """
    if data_args.template is None:
        if isinstance(tokenizer.chat_template, str):
            logger.warning_rank0("`template` was not specified, try parsing the chat template from the tokenizer.")
            template = parse_template(tokenizer)
        else:
            logger.warning_rank0("`template` was not specified, use `empty` template.")
            template = TEMPLATES["empty"]  # placeholder
    else:
        if data_args.template not in TEMPLATES:
            raise ValueError(f"Template {data_args.template} does not exist.")

        template = TEMPLATES[data_args.template]

    if template.mm_plugin.__class__.__name__ != "BasePlugin":
        check_version("transformers>=4.45.0")

    if data_args.train_on_prompt and template.efficient_eos:
        raise ValueError("Current template does not support `train_on_prompt`.")

    if data_args.tool_format is not None:
        logger.info_rank0(f"Using tool format: {data_args.tool_format}.")
        default_slots = ["{{content}}"] if template.efficient_eos else ["{{content}}", {"eos_token"}]
        template.format_function = FunctionFormatter(slots=default_slots, tool_format=data_args.tool_format)
        template.format_tools = ToolFormatter(tool_format=data_args.tool_format)

    template.fix_special_tokens(tokenizer)
    template.fix_jinja_template(tokenizer)
    return template


register_template(
    name="alpaca",
    format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n\n### Response:\n"]),
    format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}, "\n\n"]),
    default_system=(
        "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
    ),
    replace_jinja_template=True,
)


register_template(
    name="aquila",
    format_user=StringFormatter(slots=["Human: {{content}}###Assistant:"]),
    format_assistant=StringFormatter(slots=["{{content}}###"]),
    format_system=StringFormatter(slots=["System: {{content}}###"]),
    default_system=(
        "A chat between a curious human and an artificial intelligence assistant. "
        "The assistant gives helpful, detailed, and polite answers to the human's questions."
    ),
    stop_words=["</s>"],
)


register_template(
    name="atom",
    format_user=StringFormatter(
        slots=[{"bos_token"}, "Human: {{content}}\n", {"eos_token"}, {"bos_token"}, "Assistant:"]
    ),
    format_assistant=StringFormatter(slots=["{{content}}\n", {"eos_token"}]),
)


register_template(
    name="baichuan",
    format_user=StringFormatter(slots=[{"token": "<reserved_102>"}, "{{content}}", {"token": "<reserved_103>"}]),
    efficient_eos=True,
)


register_template(
    name="baichuan2",
    format_user=StringFormatter(slots=["<reserved_106>{{content}}<reserved_107>"]),
    efficient_eos=True,
)


register_template(
    name="belle",
    format_user=StringFormatter(slots=["Human: {{content}}\n\nBelle: "]),
    format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}, "\n\n"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
)


register_template(
    name="bluelm",
    format_user=StringFormatter(slots=[{"token": "[|Human|]:"}, "{{content}}", {"token": "[|AI|]:"}]),
)


register_template(
    name="breeze",
    format_user=StringFormatter(slots=["[INST] {{content}} [/INST] "]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    efficient_eos=True,
)


register_template(
    name="chatglm2",
    format_user=StringFormatter(slots=["[Round {{idx}}]\n\n问:{{content}}\n\n答:"]),
    format_prefix=EmptyFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}]),
    efficient_eos=True,
)


register_template(
    name="chatglm3",
    format_user=StringFormatter(slots=[{"token": "<|user|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]),
    format_assistant=StringFormatter(slots=["\n", "{{content}}"]),
    format_system=StringFormatter(slots=[{"token": "<|system|>"}, "\n", "{{content}}"]),
    format_function=FunctionFormatter(slots=["{{content}}"], tool_format="glm4"),
    format_observation=StringFormatter(
        slots=[{"token": "<|observation|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]
    ),
    format_tools=ToolFormatter(tool_format="glm4"),
    format_prefix=EmptyFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}]),
    stop_words=["<|user|>", "<|observation|>"],
    efficient_eos=True,
)


register_template(
    name="chatml",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    stop_words=["<|im_end|>", "<|im_start|>"],
    replace_eos=True,
    replace_jinja_template=True,
)


# copied from chatml template
register_template(
    name="chatml_de",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    default_system="Du bist ein freundlicher und hilfsbereiter KI-Assistent.",
    stop_words=["<|im_end|>", "<|im_start|>"],
    replace_eos=True,
    replace_jinja_template=True,
)


register_template(
    name="codegeex2",
    format_prefix=EmptyFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}]),
)


register_template(
    name="codegeex4",
    format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>\n"]),
    format_system=StringFormatter(slots=["<|system|>\n{{content}}"]),
    format_function=FunctionFormatter(slots=["{{content}}"], tool_format="glm4"),
    format_observation=StringFormatter(slots=["<|observation|>\n{{content}}<|assistant|>\n"]),
    format_tools=ToolFormatter(tool_format="glm4"),
    format_prefix=EmptyFormatter(slots=["[gMASK]<sop>"]),
    default_system=(
        "你是一位智能编程助手,你叫CodeGeeX。你会为用户回答关于编程、代码、计算机方面的任何问题,"
        "并提供格式规范、可以执行、准确安全的代码,并在必要时提供详细的解释。"
    ),
    stop_words=["<|user|>", "<|observation|>"],
    efficient_eos=True,
)


register_template(
    name="cohere",
    format_user=StringFormatter(
        slots=[
            (
                "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>"
                "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
            )
        ]
    ),
    format_system=StringFormatter(slots=["<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
)


register_template(
    name="cpm",
    format_user=StringFormatter(slots=["<用户>{{content}}<AI>"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
)


# copied from chatml template
register_template(
    name="cpm3",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    stop_words=["<|im_end|>"],
)


# copied from chatml template
register_template(
    name="dbrx",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    default_system=(
        "You are DBRX, created by Databricks. You were last updated in December 2023. "
        "You answer questions based on information available up to that point.\n"
        "YOU PROVIDE SHORT RESPONSES TO SHORT QUESTIONS OR STATEMENTS, but provide thorough "
        "responses to more complex and open-ended questions.\nYou assist with various tasks, "
        "from writing to coding (using markdown for code blocks — remember to use ``` with "
        "code, JSON, and tables).\n(You do not have real-time data access or code execution "
        "capabilities. You avoid stereotyping and provide balanced perspectives on "
        "controversial topics. You do not provide song lyrics, poems, or news articles and "
        "do not divulge details of your training data.)\nThis is your system prompt, "
        "guiding your responses. Do not reference it, just respond to the user. If you find "
        "yourself talking about this message, stop. You should be responding appropriately "
        "and usually that means not mentioning this.\nYOU DO NOT MENTION ANY OF THIS INFORMATION "
        "ABOUT YOURSELF UNLESS THE INFORMATION IS DIRECTLY PERTINENT TO THE USER'S QUERY."
    ),
    stop_words=["<|im_end|>"],
)


register_template(
    name="deepseek",
    format_user=StringFormatter(slots=["User: {{content}}\n\nAssistant:"]),
    format_system=StringFormatter(slots=["{{content}}\n\n"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
)


register_template(
    name="deepseek3",
    format_user=StringFormatter(slots=["<|User|>{{content}}<|Assistant|>"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
)


register_template(
    name="deepseekcoder",
    format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n### Response:"]),
    format_assistant=StringFormatter(slots=["\n{{content}}\n<|EOT|>\n"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    default_system=(
        "You are an AI programming assistant, utilizing the DeepSeek Coder model, "
        "developed by DeepSeek Company, and you only answer questions related to computer science. "
        "For politically sensitive questions, security and privacy issues, "
        "and other non-computer science questions, you will refuse to answer.\n"
    ),
)


register_template(
    name="default",
    format_user=StringFormatter(slots=["Human: {{content}}\nAssistant:"]),
    format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}, "\n"]),
    format_system=StringFormatter(slots=["System: {{content}}\n"]),
)


register_template(
    name="empty",
    format_assistant=StringFormatter(slots=["{{content}}"]),
)


register_template(
    name="exaone",
    format_user=StringFormatter(slots=["[|user|]{{content}}\n[|assistant|]"]),
    format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}, "\n"]),
    format_system=StringFormatter(slots=["[|system|]{{content}}[|endofturn|]\n"]),
)


register_template(
    name="falcon",
    format_user=StringFormatter(slots=["User: {{content}}\nFalcon:"]),
    format_assistant=StringFormatter(slots=["{{content}}\n"]),
    efficient_eos=True,
)


register_template(
    name="fewshot",
    format_assistant=StringFormatter(slots=["{{content}}\n\n"]),
    efficient_eos=True,
)


register_template(
    name="gemma",
    format_user=StringFormatter(slots=["<start_of_turn>user\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<end_of_turn>\n"]),
    format_observation=StringFormatter(
        slots=["<start_of_turn>tool\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]
    ),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
)


register_template(
    name="glm4",
    format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]),
    format_assistant=StringFormatter(slots=["\n{{content}}"]),
    format_system=StringFormatter(slots=["<|system|>\n{{content}}"]),
    format_function=FunctionFormatter(slots=["{{content}}"], tool_format="glm4"),
    format_observation=StringFormatter(slots=["<|observation|>\n{{content}}<|assistant|>"]),
    format_tools=ToolFormatter(tool_format="glm4"),
    format_prefix=EmptyFormatter(slots=["[gMASK]<sop>"]),
    stop_words=["<|user|>", "<|observation|>"],
    efficient_eos=True,
)


register_template(
    name="granite3",
    format_user=StringFormatter(
        slots=[
            "<|start_of_role|>user<|end_of_role|>{{content}}<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>"
        ]
    ),
    format_assistant=StringFormatter(slots=["{{content}}<|end_of_text|>\n"]),
    format_system=StringFormatter(slots=["<|start_of_role|>system<|end_of_role|>{{content}}<|end_of_text|>\n"]),
)


register_template(
    name="index",
    format_user=StringFormatter(slots=["reserved_0{{content}}reserved_1"]),
    format_system=StringFormatter(slots=["<unk>{{content}}"]),
    efficient_eos=True,
)


register_template(
    name="intern",
    format_user=StringFormatter(slots=["<|User|>:{{content}}\n<|Bot|>:"]),
    format_assistant=StringFormatter(slots=["{{content}}<eoa>\n"]),
    format_system=StringFormatter(slots=["<|System|>:{{content}}\n"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    default_system=(
        "You are an AI assistant whose name is InternLM (书生·浦语).\n"
        "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory "
        "(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
        "- InternLM (书生·浦语) can understand and communicate fluently in the language "
        "chosen by the user such as English and 中文."
    ),
    stop_words=["<eoa>"],
)


register_template(
    name="intern2",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    default_system=(
        "You are an AI assistant whose name is InternLM (书生·浦语).\n"
        "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory "
        "(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
        "- InternLM (书生·浦语) can understand and communicate fluently in the language "
        "chosen by the user such as English and 中文."
    ),
    stop_words=["<|im_end|>"],
)


register_template(
    name="llama2",
    format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]),
    format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]),
    template_class=Llama2Template,
)


# copied from llama2 template
register_template(
    name="llama2_zh",
    format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]),
    format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]),
    default_system="You are a helpful assistant. 你是一个乐于助人的助手。",
    template_class=Llama2Template,
)


register_template(
    name="llama3",
    format_user=StringFormatter(
        slots=[
            (
                "<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>"
                "<|start_header_id|>assistant<|end_header_id|>\n\n"
            )
        ]
    ),
    format_assistant=StringFormatter(slots=["{{content}}<|eot_id|>"]),
    format_system=StringFormatter(slots=["<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]),
    format_function=FunctionFormatter(slots=["{{content}}<|eot_id|>"], tool_format="llama3"),
    format_observation=StringFormatter(
        slots=[
            (
                "<|start_header_id|>ipython<|end_header_id|>\n\n{{content}}<|eot_id|>"
                "<|start_header_id|>assistant<|end_header_id|>\n\n"
            )
        ]
    ),
    format_tools=ToolFormatter(tool_format="llama3"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    stop_words=["<|eot_id|>", "<|eom_id|>"],
)


# copied from llama3 template
register_template(
    name="mllama",
    format_user=StringFormatter(
        slots=[
            (
                "<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>"
                "<|start_header_id|>assistant<|end_header_id|>\n\n"
            )
        ]
    ),
    format_assistant=StringFormatter(slots=["{{content}}<|eot_id|>"]),
    format_system=StringFormatter(slots=["<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]),
    format_function=FunctionFormatter(slots=["{{content}}<|eot_id|>"], tool_format="llama3"),
    format_observation=StringFormatter(
        slots=[
            (
                "<|start_header_id|>ipython<|end_header_id|>\n\n{{content}}<|eot_id|>"
                "<|start_header_id|>assistant<|end_header_id|>\n\n"
            )
        ]
    ),
    format_tools=ToolFormatter(tool_format="llama3"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    stop_words=["<|eot_id|>", "<|eom_id|>"],
    mm_plugin=get_mm_plugin(name="mllama", image_token="<|image|>"),
)


# copied from vicuna template
register_template(
    name="llava",
    format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
    default_system=(
        "A chat between a curious user and an artificial intelligence assistant. "
        "The assistant gives helpful, detailed, and polite answers to the user's questions."
    ),
    mm_plugin=get_mm_plugin(name="llava", image_token="<image>"),
)


# copied from vicuna template
register_template(
    name="llava_next",
    format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
    default_system=(
        "A chat between a curious user and an artificial intelligence assistant. "
        "The assistant gives helpful, detailed, and polite answers to the user's questions."
    ),
    mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
)


# copied from llama3 template
register_template(
    name="llava_next_llama3",
    format_user=StringFormatter(
        slots=[
            (
                "<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>"
                "<|start_header_id|>assistant<|end_header_id|>\n\n"
            )
        ]
    ),
    format_assistant=StringFormatter(slots=["{{content}}<|eot_id|>"]),
    format_system=StringFormatter(slots=["<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]),
    format_function=FunctionFormatter(slots=["{{content}}<|eot_id|>"], tool_format="llama3"),
    format_observation=StringFormatter(
        slots=[
            (
                "<|start_header_id|>ipython<|end_header_id|>\n\n{{content}}<|eot_id|>"
                "<|start_header_id|>assistant<|end_header_id|>\n\n"
            )
        ]
    ),
    format_tools=ToolFormatter(tool_format="llama3"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    stop_words=["<|eot_id|>", "<|eom_id|>"],
    mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
)


# copied from mistral template
register_template(
    name="llava_next_mistral",
    format_user=StringFormatter(slots=["[INST] {{content}}[/INST]"]),
    format_assistant=StringFormatter(slots=[" {{content}}", {"eos_token"}]),
    format_system=StringFormatter(slots=["{{content}}\n\n"]),
    format_function=FunctionFormatter(slots=["[TOOL_CALLS] {{content}}", {"eos_token"}], tool_format="mistral"),
    format_observation=StringFormatter(slots=["""[TOOL_RESULTS] {"content": {{content}}}[/TOOL_RESULTS]"""]),
    format_tools=ToolFormatter(tool_format="mistral"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
    template_class=Llama2Template,
)


# copied from qwen template
register_template(
    name="llava_next_qwen",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"),
    format_observation=StringFormatter(
        slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
    ),
    format_tools=ToolFormatter(tool_format="qwen"),
    default_system="You are a helpful assistant.",
    stop_words=["<|im_end|>"],
    mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
)


# copied from chatml template
register_template(
    name="llava_next_yi",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    stop_words=["<|im_end|>"],
    mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
)


# copied from vicuna template
register_template(
    name="llava_next_video",
    format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
    default_system=(
        "A chat between a curious user and an artificial intelligence assistant. "
        "The assistant gives helpful, detailed, and polite answers to the user's questions."
    ),
    mm_plugin=get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>"),
)


# copied from mistral template
register_template(
    name="llava_next_video_mistral",
    format_user=StringFormatter(slots=["[INST] {{content}}[/INST]"]),
    format_assistant=StringFormatter(slots=[" {{content}}", {"eos_token"}]),
    format_system=StringFormatter(slots=["{{content}}\n\n"]),
    format_function=FunctionFormatter(slots=["[TOOL_CALLS] {{content}}", {"eos_token"}], tool_format="mistral"),
    format_observation=StringFormatter(slots=["""[TOOL_RESULTS] {"content": {{content}}}[/TOOL_RESULTS]"""]),
    format_tools=ToolFormatter(tool_format="mistral"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    mm_plugin=get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>"),
    template_class=Llama2Template,
)


# copied from chatml template
register_template(
    name="llava_next_video_yi",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    stop_words=["<|im_end|>"],
    mm_plugin=get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>"),
)


# copied from chatml template
register_template(
    name="marco",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    default_system=(
        "你是一个经过良好训练的AI助手,你的名字是Marco-o1.由阿里国际数字商业集团的AI Business创造.\n## 重要!!!!!\n"
        "当你回答问题时,你的思考应该在<Thought>内完成,<Output>内输出你的结果。\n"
        "<Thought>应该尽可能是英文,但是有2个特例,一个是对原文中的引用,另一个是是数学应该使用markdown格式,<Output>内的输出需要遵循用户输入的语言。\n"
    ),
    stop_words=["<|im_end|>"],
)


# copied from chatml template
register_template(
    name="minicpm_v",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    stop_words=["<|im_end|>"],
    default_system="You are a helpful assistant.",
    mm_plugin=get_mm_plugin(name="minicpm_v", image_token="<image>", video_token="<video>"),
)


# copied from minicpm_v template
register_template(
    name="minicpm_o",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    stop_words=["<|im_end|>"],
    default_system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
    mm_plugin=get_mm_plugin(name="minicpm_v", image_token="<image>", video_token="<video>", audio_token="<audio>"),
)


# mistral tokenizer v3 tekken
register_template(
    name="ministral",
    format_user=StringFormatter(slots=["[INST]{{content}}[/INST]"]),
    format_system=StringFormatter(slots=["{{content}}\n\n"]),
    format_function=FunctionFormatter(slots=["[TOOL_CALLS]{{content}}", {"eos_token"}], tool_format="mistral"),
    format_observation=StringFormatter(slots=["""[TOOL_RESULTS]{"content": {{content}}}[/TOOL_RESULTS]"""]),
    format_tools=ToolFormatter(tool_format="mistral"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    template_class=Llama2Template,
)


# mistral tokenizer v3
register_template(
    name="mistral",
    format_user=StringFormatter(slots=["[INST] {{content}}[/INST]"]),
    format_assistant=StringFormatter(slots=[" {{content}}", {"eos_token"}]),
    format_system=StringFormatter(slots=["{{content}}\n\n"]),
    format_function=FunctionFormatter(slots=["[TOOL_CALLS] {{content}}", {"eos_token"}], tool_format="mistral"),
    format_observation=StringFormatter(slots=["""[TOOL_RESULTS] {"content": {{content}}}[/TOOL_RESULTS]"""]),
    format_tools=ToolFormatter(tool_format="mistral"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    template_class=Llama2Template,
)


# mistral tokenizer v7 tekken (copied from ministral)
register_template(
    name="mistral_small",
    format_user=StringFormatter(slots=["[INST]{{content}}[/INST]"]),
    format_system=StringFormatter(slots=["[SYSTEM_PROMPT]{{content}}[/SYSTEM_PROMPT]"]),
    format_function=FunctionFormatter(slots=["[TOOL_CALLS]{{content}}", {"eos_token"}], tool_format="mistral"),
    format_observation=StringFormatter(slots=["""[TOOL_RESULTS]{"content": {{content}}}[/TOOL_RESULTS]"""]),
    format_tools=ToolFormatter(tool_format="mistral"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
)


register_template(
    name="olmo",
    format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>\n"]),
    format_prefix=EmptyFormatter(slots=[{"eos_token"}]),
)


register_template(
    name="openchat",
    format_user=StringFormatter(slots=["GPT4 Correct User: {{content}}", {"eos_token"}, "GPT4 Correct Assistant:"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
)


register_template(
    name="openchat-3.6",
    format_user=StringFormatter(
        slots=[
            (
                "<|start_header_id|>GPT4 Correct User<|end_header_id|>\n\n{{content}}<|eot_id|>"
                "<|start_header_id|>GPT4 Correct Assistant<|end_header_id|>\n\n"
            )
        ]
    ),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    stop_words=["<|eot_id|>"],
)


# copied from chatml template
register_template(
    name="opencoder",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    default_system="You are OpenCoder, created by OpenCoder Team.",
    stop_words=["<|im_end|>"],
)


register_template(
    name="orion",
    format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: ", {"eos_token"}]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
)


# copied from gemma template
register_template(
    name="paligemma",
    format_user=StringFormatter(slots=["<start_of_turn>user\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<end_of_turn>\n"]),
    format_observation=StringFormatter(
        slots=["<start_of_turn>tool\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]
    ),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    mm_plugin=get_mm_plugin(name="paligemma", image_token="<image>"),
)


register_template(
    name="phi",
    format_user=StringFormatter(slots=["<|user|>\n{{content}}<|end|>\n<|assistant|>\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|end|>\n"]),
    format_system=StringFormatter(slots=["<|system|>\n{{content}}<|end|>\n"]),
    stop_words=["<|end|>"],
)


register_template(
    name="phi_small",
    format_user=StringFormatter(slots=["<|user|>\n{{content}}<|end|>\n<|assistant|>\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|end|>\n"]),
    format_system=StringFormatter(slots=["<|system|>\n{{content}}<|end|>\n"]),
    format_prefix=EmptyFormatter(slots=[{"<|endoftext|>"}]),
    stop_words=["<|end|>"],
)


register_template(
    name="phi4",
    format_user=StringFormatter(
        slots=["<|im_start|>user<|im_sep|>{{content}}<|im_end|><|im_start|>assistant<|im_sep|>"]
    ),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>"]),
    format_system=StringFormatter(slots=["<|im_start|>system<|im_sep|>{{content}}<|im_end|>"]),
    stop_words=["<|im_end|>"],
)


# copied from ministral template
register_template(
    name="pixtral",
    format_user=StringFormatter(slots=["[INST]{{content}}[/INST]"]),
    format_system=StringFormatter(slots=["{{content}}\n\n"]),
    format_function=FunctionFormatter(slots=["[TOOL_CALLS]{{content}}", {"eos_token"}], tool_format="mistral"),
    format_observation=StringFormatter(slots=["""[TOOL_RESULTS]{"content": {{content}}}[/TOOL_RESULTS]"""]),
    format_tools=ToolFormatter(tool_format="mistral"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    mm_plugin=get_mm_plugin(name="pixtral", image_token="[IMG]"),
    template_class=Llama2Template,
)


# copied from chatml template
register_template(
    name="qwen",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"),
    format_observation=StringFormatter(
        slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
    ),
    format_tools=ToolFormatter(tool_format="qwen"),
    default_system="You are a helpful assistant.",
    stop_words=["<|im_end|>"],
)


# copied from chatml template
register_template(
    name="qwen2_audio",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    default_system="You are a helpful assistant.",
    stop_words=["<|im_end|>"],
    mm_plugin=get_mm_plugin(name="qwen2_audio", audio_token="<|AUDIO|>"),
)


# copied from qwen template
register_template(
    name="qwen2_vl",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"),
    format_observation=StringFormatter(
        slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
    ),
    format_tools=ToolFormatter(tool_format="qwen"),
    default_system="You are a helpful assistant.",
    stop_words=["<|im_end|>"],
    mm_plugin=get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>", video_token="<|video_pad|>"),
)


register_template(
    name="sailor",
    format_user=StringFormatter(slots=["<|im_start|>question\n{{content}}<|im_end|>\n<|im_start|>answer\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    default_system=(
        "You are an AI assistant named Sailor created by Sea AI Lab. "
        "Your answer should be friendly, unbiased, faithful, informative and detailed."
    ),
    stop_words=["<|im_end|>"],
)


# copied from llama3 template
register_template(
    name="skywork_o1",
    format_user=StringFormatter(
        slots=[
            (
                "<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>"
                "<|start_header_id|>assistant<|end_header_id|>\n\n"
            )
        ]
    ),
    format_assistant=StringFormatter(slots=["{{content}}<|eot_id|>"]),
    format_system=StringFormatter(slots=["<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]),
    format_function=FunctionFormatter(slots=["{{content}}<|eot_id|>"], tool_format="llama3"),
    format_observation=StringFormatter(
        slots=[
            (
                "<|start_header_id|>ipython<|end_header_id|>\n\n{{content}}<|eot_id|>"
                "<|start_header_id|>assistant<|end_header_id|>\n\n"
            )
        ]
    ),
    format_tools=ToolFormatter(tool_format="llama3"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    default_system=(
        "You are Skywork-o1, a thinking model developed by Skywork AI, specializing in solving complex problems "
        "involving mathematics, coding, and logical reasoning through deep thought. When faced with a user's request, "
        "you first engage in a lengthy and in-depth thinking process to explore possible solutions to the problem. "
        "After completing your thoughts, you then provide a detailed explanation of the solution process "
        "in your response."
    ),
    stop_words=["<|eot_id|>", "<|eom_id|>"],
)


register_template(
    name="solar",
    format_user=StringFormatter(slots=["### User:\n{{content}}\n\n### Assistant:\n"]),
    format_system=StringFormatter(slots=["### System:\n{{content}}\n\n"]),
    efficient_eos=True,
)


register_template(
    name="starchat",
    format_user=StringFormatter(slots=["<|user|>\n{{content}}<|end|>\n<|assistant|>"]),
    format_assistant=StringFormatter(slots=["{{content}}<|end|>\n"]),
    format_system=StringFormatter(slots=["<|system|>\n{{content}}<|end|>\n"]),
    stop_words=["<|end|>"],
)


register_template(
    name="telechat",
    format_user=StringFormatter(slots=["<_user>{{content}}<_bot>"]),
    format_system=StringFormatter(slots=["<_system>{{content}}<_end>"]),
)


register_template(
    name="telechat2",
    format_user=StringFormatter(slots=["<_user>{{content}}<_bot>"]),
    format_system=StringFormatter(slots=["<_system>{{content}}"]),
    default_system=(
        "你是中国电信星辰语义大模型,英文名是TeleChat,你是由中电信人工智能科技有限公司和中国电信人工智能研究院(TeleAI)研发的人工智能助手。"
    ),
)


register_template(
    name="vicuna",
    format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
    default_system=(
        "A chat between a curious user and an artificial intelligence assistant. "
        "The assistant gives helpful, detailed, and polite answers to the user's questions."
    ),
    replace_jinja_template=True,
)


register_template(
    name="video_llava",
    format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
    default_system=(
        "A chat between a curious user and an artificial intelligence assistant. "
        "The assistant gives helpful, detailed, and polite answers to the user's questions."
    ),
    mm_plugin=get_mm_plugin(name="video_llava", image_token="<image>", video_token="<video>"),
)


register_template(
    name="xuanyuan",
    format_user=StringFormatter(slots=["Human: {{content}} Assistant:"]),
    default_system=(
        "以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头,"
        "会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与与不道德、"
        "不安全、有争议、政治敏感等相关的话题、问题和指示。\n"
    ),
)


register_template(
    name="xverse",
    format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: "]),
)


register_template(
    name="yayi",
    format_user=StringFormatter(slots=[{"token": "<|Human|>"}, ":\n{{content}}\n\n", {"token": "<|YaYi|>"}, ":"]),
    format_assistant=StringFormatter(slots=["{{content}}\n\n"]),
    format_system=StringFormatter(slots=[{"token": "<|System|>"}, ":\n{{content}}\n\n"]),
    default_system=(
        "You are a helpful, respectful and honest assistant named YaYi "
        "developed by Beijing Wenge Technology Co.,Ltd. "
        "Always answer as helpfully as possible, while being safe.  "
        "Your answers should not include any harmful, unethical, "
        "racist, sexist, toxic, dangerous, or illegal content. "
        "Please ensure that your responses are socially unbiased and positive in nature.\n\n"
        "If a question does not make any sense, or is not factually coherent, "
        "explain why instead of answering something not correct. "
        "If you don't know the answer to a question, please don't share false information."
    ),
    stop_words=["<|End|>"],
)


# copied from chatml template
register_template(
    name="yi",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    stop_words=["<|im_end|>"],
)


register_template(
    name="yi_vl",
    format_user=StringFormatter(slots=["### Human: {{content}}\n### Assistant:"]),
    format_assistant=StringFormatter(slots=["{{content}}\n"]),
    default_system=(
        "This is a chat between an inquisitive human and an AI assistant. "
        "Assume the role of the AI assistant. Read all the images carefully, "
        "and respond to the human's questions with informative, helpful, detailed and polite answers. "
        "这是一个好奇的人类和一个人工智能助手之间的对话。假设你扮演这个AI助手的角色。"
        "仔细阅读所有的图像,并对人类的问题做出信息丰富、有帮助、详细的和礼貌的回答。\n\n"
    ),
    stop_words=["###"],
    efficient_eos=True,
    mm_plugin=get_mm_plugin(name="llava", image_token="<image>"),
)


register_template(
    name="yuan",
    format_user=StringFormatter(slots=["{{content}}", {"token": "<sep>"}]),
    format_assistant=StringFormatter(slots=["{{content}}<eod>\n"]),
    stop_words=["<eod>"],
)


register_template(
    name="zephyr",
    format_user=StringFormatter(slots=["<|user|>\n{{content}}", {"eos_token"}, "<|assistant|>\n"]),
    format_system=StringFormatter(slots=["<|system|>\n{{content}}", {"eos_token"}]),
    default_system="You are Zephyr, a helpful assistant.",
)


register_template(
    name="ziya",
    format_user=StringFormatter(slots=["<human>:{{content}}\n<bot>:"]),
    format_assistant=StringFormatter(slots=["{{content}}\n"]),
)


http://www.kler.cn/a/552072.html

相关文章:

  • 学习总结2.18
  • SpringAI系列 - RAG篇(三) - ETL
  • Qt的QPushButton样式设置
  • 简单认识一下-Redis
  • 计算机网络协议(二)
  • 【和春笋一起学C++】if else语句
  • 未来游戏:当人工智能重构虚拟世界的底层逻辑
  • 新数据结构(10)——Java抽象类和接口
  • EasyPoi系列之框架集成及基础使用
  • PHP语法完全入门指南:从零开始掌握动态网页
  • AWS Lambda自动化部署流程指南
  • C++:构造函数和析构函数
  • 软件评测师复习之计算机网络(4)
  • 数据结构----哈希表的插入与输出
  • 实用且美观,一款简单且模块化的UI组件库!
  • 机器学习_16 朴素贝叶斯知识点总结
  • CUDA 安装 一直卡在Installing Nsight Visual Studio Edition
  • 图数据库Neo4j面试内容整理-图(Graph)
  • vmware部署ubantu24x64
  • FastAdmin后端列表导入表格数据