当前位置: 首页 > article >正文

C语言递归——青蛙跳台阶问题和汉诺塔问题

一、青蛙跳台阶问题

题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上n级台阶总共有多少种跳法。

问题分析:
青蛙跳台阶问题可以分成n个子问题。假设青蛙要跳上n级台阶,那么它的最后一步有两种选择:
1.从第n-1级台阶跳1步到达第n级
2.从第n-2级台阶跳2步到达第n级

所以,跳到第n级台阶的跳法数等于跳到第n-1级台阶的跳法数加上跳到第n-2级台阶的跳法数,用数学函数表示为**F(n) = F(n-1) + F(n-2)**

边界条件:
1.当n=1时,青蛙只能跳1步,因此只有一种跳法:F(n) = 1
2.当n=2时,青蛙有两种跳法:连续跳两步,或者直接跳两步,有两种跳法:F(n) = 2

1.递归解法:

优点:简单直观,易理解
缺点:效率极低,不适合较大的n,时间复杂度为2^n

#include <stdio.h>
int F(int n)
{
	if (n <= 0)
	{
		return 0;
	}
	if (n == 1)
	{
		return 1;
	}
	if (n == 2)
	{
		return 2;
	}
	return F(n - 1) + F(n - 2);
}

int main()
{
	int n = 0;
	scanf("%d", &n);
	int count = F(n);
	printf("%d\n", count);
	return 0;
}

2.迭代(循环)方法

优点:避免重复计算,效率高

#include <stdio.h>
int F(int n)
{
	if (n <= 0)
	{
		return 0;
	}
	if (n == 1)
	{
		return 1;
	}
	if (n == 2)
	{
		return 2;
	}

	int a = 1;
	int b = 2;
	int c = 0;
	for (int j = 3; j <= n; j++)
	{
		c = a + b;
		a = b;
		b = c;
	}
	return c;
}

int main()
{
	int n = 0;
	scanf("%d", &n);
	int count = F(n);
	printf("%d\n", count);
	return 0;
}

二、汉诺塔问题

题目描述:
有三根柱子,分别为A、B和C。在A柱子上有n个大小不一的盘子,从上到下依次增大。目标是将所有盘子从A柱子移动到C柱子上,移动过程中需要满足以下规则:
•每次只能移动一个盘子
•每次移动时,盘子必须从顶部移动到另一根柱子的顶部
•任何时候,较大的盘子不能放在较小的盘子上面

解题思路:
假设我们需要将n个盘子从A柱子移动到C柱子,可以分解为以下步骤:
•将上面的n-1个盘子从A柱子移动到B柱子(借助C柱子)
•将第n个盘子(最大的盘子)从A柱子直接移动到C柱子
•再将B柱子上的n-1个盘子移动到C柱子(借助A柱子)

递归公式:
• 如果只有一个盘子(n=1),直接将盘子从A柱子移动到C柱子
• 如果有n个盘子(n>1),按照上述三步递归解决
终止条件:
• 当n=1时,直接移动盘子,无需进一步分解

1.解法

优点:简洁易懂
缺点:计算较大的数,时间会很久

#include <stdio.h>
void hanoi(int n, char A, char B, char C)
{
	if (n == 1)
	{
		printf("将第%d个盘子从%c柱子移动到%c柱子\n", n, A, C);
		return;
	}
	//将n-1个盘子从A移动到B,借助C
	hanoi(n - 1, A, C, B);

	//将n-1个盘子从A移动到C
	printf("将第%d个盘子从%c柱子移动到%c柱子\n", n, A, C);

	//将n-1个盘子从B移动到C,借助A
	hanoi(n - 1, B, A, C);
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	hanoi(n, 'A', 'B', 'C');
	return 0;
}

http://www.kler.cn/a/558947.html

相关文章:

  • 辗转相除法(欧几里得算法)
  • transformer架构嵌入层位置编码之RoPE旋转位置编码及简单实现示例
  • go-zero学习笔记(五)
  • Windows系统第一次运行C语言程序,环境配置,软件安装等遇到的坑及解决方法
  • 嵌入式之内存管理
  • 【2025.2最新版】从零开始的HTML网页开发学习笔记(包含网页基础概念 HTML语法 前端工具VsCode介绍)
  • mysql之B+ 树索引 (InnoDB 存储引擎)机制
  • 反射和注解
  • 自制操作系统前置知识汇编学习
  • 实验-安装Proteus
  • ZLMediaKi集群设置
  • 简说spring 的设计模式
  • Python项目源码33:待办事项列表应用2.0(命令行界面+Json+类)
  • Java基础常见的面试题(易错!!)
  • QT闲记-状态栏,模态对话框,非模态对话框
  • 485. 最大连续 1 的个数
  • 【CI/CD】Jenkinsfile管理+参数化构建+邮件通知以及Jenkins + SonarQube 代码审查
  • 【数据库维护】如何解决Clickhouse数据库Too many parts报错
  • 当“欲望号街车”遇阻:解锁自由的疯狂选择题
  • 【C语言】指针(5)