代码随想录day19
235.二叉搜索树的最近公共祖先
//需理解二叉搜索树和普通二叉树的不同,其左右子树是有序的,从上到下遍历第一次遇到cur->val在p,q之间即为最近公共祖先
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root == nullptr) return nullptr;
if(root->val > p->val && root->val > q->val){
return lowestCommonAncestor(root->left, p, q);
}else if (root->val < p->val && root->val < q->val){
return lowestCommonAncestor(root->right, p, q);
}else{
return root;
}
}
701.二叉搜索树中的插入操作
void traverse(TreeNode* root, int val){
if(root == nullptr) {
return;
}
if(root->left == nullptr && root->right == nullptr){
if(root->val > val){
root->left = new TreeNode(val);
}else{
root->right = new TreeNode(val);
}
return;
}else if( root->left == nullptr && root->right != nullptr){
if(root->val > val){
root->left = new TreeNode(val);
return;
}else{
return traverse(root->right, val);
}
}else if (root->left != nullptr && root->right == nullptr){
if(root->val < val){
root->right = new TreeNode(val);
return;
}
return traverse(root->left, val);
}else{
if(root->val > val){
return traverse(root->left, val);
}else{
return traverse(root->right, val);
}
}
}
TreeNode* insertIntoBST(TreeNode* root, int val) {
if(root == nullptr) {
root = new TreeNode(val);
return root;
}else{
traverse(root, val);
return root;
}
}
//简答写法,便于理解
TreeNode* insertIntoBST(TreeNode* root, int val) {
if(root == nullptr) {
root = new TreeNode(val);
return root;
}
if(root->val > val) root->left = insertIntoBST(root->left, val);
if(root->val < val) root->right = insertIntoBST(root->right, val);
return root;
}
450.删除二叉搜索树中的节点,需二刷
//注意搜索树和搜索边的区别及用法,还有删除节点时左子树的位置变化
TreeNode* deleteNode(TreeNode* root, int key) {
if(root == nullptr) return root;
if(root->val == key){
if(root->left == nullptr && root->right == nullptr){
delete root;
return nullptr;
}else if(root->left != nullptr && root->right == nullptr){
root = root->left;
return root;
}else if(root->left == nullptr && root->right!= nullptr){
root = root->right;
return root;
}else{
TreeNode* cur = root->right;
while(cur->left){
cur = cur->left;
}
cur->left = root->left;
root = root->right;
return root;
}
}
if(root->val > key) root->left = deleteNode(root->left, key);
if(root->val < key) root->right = deleteNode(root->right, key);
return root;
}