当前位置: 首页 > article >正文

编程小白冲Kaggle每日打卡(13)--kaggle学堂:<机器学习简介>基础数据探索

Kaggle官方课程链接:Basic Data Exploration

本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。

Basic Data Exploration

加载并理解您的数据。

使用Pandas熟悉您的数据

任何机器学习项目的第一步都是熟悉数据。您将使用Pandas库进行此操作。Pandas是数据科学家用来探索和操纵数据的主要工具。大多数人在代码中将pandas缩写为pd。

import pandas as pd

Pandas库最重要的部分是DataFrame。DataFrame包含您可能认为是表的数据类型。这类似于Excel中的工作表或SQL数据库中的表。

Pandas对于你想用这类数据做的大多数事情都有强大的方法。

例如,我们将查看澳大利亚墨尔本的房价数据。在实践练习中,您将把相同的过程应用于一个新的数据集,该数据集包含爱荷华州的房价。

示例(墨尔本)数据位于文件路径中/输入/墨尔本住房快照/melb_data.csv。

我们使用以下命令加载和浏览数据:

# save filepath to variable for easier access
melbourne_file_path = '../input/melbourne-housing-snapshot/melb_data.csv'
# read the data and store data in DataFrame titled melbourne_data
melbourne_data = pd.read_csv(melbourne_file_path) 
# print a summary of the data in Melbourne data
melbourne_data.describe()
RoomsPriceDistancePostcodeBedroom2BathroomCarLandsizeBuildingAreaYearBuiltLattitudeLongtitudePropertycount
count13580.0000001.358000e+0413580.00000013580.00000013580.00000013580.00000013518.00000013580.0000007130.0000008205.00000013580.00000013580.00000013580.000000
mean2.9379971.075684e+0610.1377763105.3019152.9147281.5342421.610075558.416127151.9676501964.684217-37.809203144.9952167454.417378
std0.9557486.393107e+055.86872590.6769640.9659210.6917120.9626343990.669241541.01453837.2737620.0792600.1039164378.581772
min1.0000008.500000e+040.0000003000.0000000.0000000.0000000.0000000.0000000.0000001196.000000-38.182550144.431810249.000000
25%2.0000006.500000e+056.1000003044.0000002.0000001.0000001.000000177.00000093.0000001940.000000-37.856822144.9296004380.000000
50%3.0000009.030000e+059.2000003084.0000003.0000001.0000002.000000440.000000126.0000001970.000000-37.802355145.0001006555.000000
75%3.0000001.330000e+0613.0000003148.0000003.0000002.0000002.000000651.000000174.0000001999.000000-37.756400145.05830510331.000000
max10.0000009.000000e+0648.1000003977.00000020.0000008.00000010.000000433014.00000044515.0000002018.000000-37.408530145.52635021650.000000

解读数据描述

结果显示原始数据集中每列有8个数字。第一个数字是计数,显示有多少行没有缺失值。

缺失值的出现有很多原因。例如,在调查一间卧室的房子时,不会收集第二间卧室的大小。我们将回到缺失数据的话题。

第二个值是平均值,即平均值。在这种情况下,std是标准偏差,它衡量的是数值的分散程度。

要解释最小值、25%、50%、75%和最大值,想象一下从最低值到最高值对每列进行排序。第一个(最小)值是最小值。如果你遍历列表的四分之一,你会发现一个大于值的25%但小于值的75%的数字。这就是25%的值(发音为“25th percentury”)。第50和第75百分位数的定义类似,最大值是最大的数字。

Your Turn

开始你的第一个编码练习


http://www.kler.cn/a/559467.html

相关文章:

  • 基于javaweb的SpringBoot酒店管理系统设计和实现(源码+文档+部署讲解)
  • 【Python + STM32 实现外设控制的从0-1实例教程-适合新手】
  • JavaScript AJAX 库
  • day58 第十一章:图论part08
  • 大模型面试|大模型常考面经总结
  • Orange 单体架构 - 快速启动
  • 从零开始学 Rust:安装与 Hello World
  • Rocky8 源码安装 HAProxy
  • 基于Spring Boot的党员学习交流平台设计与实现(LW+源码+讲解)
  • AI回答:Linux C/C++编程学习路线
  • Docker 容器操作笔记
  • Office和WPS中使用deepseek,解决出错问题,生成速度极快,一站式AI处理文档
  • 基于ffmpeg+openGL ES实现的视频编辑工具-添加贴纸(八)
  • 企业组网IP规划与先关协议分析
  • HTML中,title和h1标签的区别是什么?
  • ip归属地和手机卡有关系吗?详细探析
  • 《Real-IAD: 用于基准测试多功能工业异常检测的真实世界多视角数据集》学习笔记
  • HTML/CSS中子代选择器
  • 写大论文的word版本格式整理,实现自动生成目录、参考文献序号、公式序号、图表序号
  • ElasticSearch+Kibana通过Docker部署到Linux服务器中