当前位置: 首页 > article >正文

smolagents学习笔记系列(五)Tools-in-depth-guide

这篇文章锁定官网教程中的 Tools-in-depth-guide 章节,主要介绍了如何详细构造自己的Tools,在之前的博文 smolagents学习笔记系列(二)Agents - Guided tour 中我初步介绍了下如何将一个函数或一个类声明成 smolagents 的工具,那么这篇文章将对这部分内容进一步深入。

  • 官网链接:https://huggingface.co/docs/smolagents/v1.9.2/en/tutorials/tools

What is a tool, and how to build one?

Tool是Agent系统在LLM中使用最广泛的东西,根据smolagents框架的要求,想要使用tool必须对以下内容进行定义:

  • name:工具名,最好是能直接表述工具功能的名字;
  • description:功能描述,对这个工具功能的详细表述;
  • input types and descriptions:输入类型与描述;
  • output type:输出类型;

官网提供了一个将类包装成工具的示例,如果是想通过类的方式定义工具的话需要继承smolagents Tool,并且要重写 forward 这个函数,目前可以粗略地认为这个函数就是最终执行的函数。该工具的作用是找到 HuggingFace 仓库中以 downloads 为分类指定 task 功能的模型,返回最受欢迎的模型信息。

但是直接运行看不到任何结果,需要在后面加一句输出内容,这里我让这个工具对象执行了 text-classification

from smolagents import Tool

class HFModelDOwnloadsTool(Tool):
    name = "model_download_counter"
    description = """
    This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub.
    It returns the name of the checkpoint."""
    inputs = {
        "task": {
            "type": "string",
            "description": "the task category (such as text-classification, depth-estimation, etc)",
        }
    }
    output_type = "string"

    def forward(self, task:str):
        from huggingface_hub import list_models
        model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
        return model.id
    
model_download_tool = HFModelDOwnloadsTool()

print(model_download_tool.forward("text-classification"))

运行:

$ (LLM) ~/Desktop/LLM $ python demo.py 
cross-encoder/ms-marco-MiniLM-L-6-v2

如果你在运行时报错下面的错:

huggingface_hub.errors.HfHubHTTPError: 401 Client Error: Unauthorized for url: https://huggingface.co/api/models?filter=text-classification&sort=downloads&direction=-1

需要在bash中设置环境变量:

$ export HF_TOKEN="你之前的token码"

Import a Space as a tool

smolagents提供了另一种方式允许你通过 Tool.from_space 这个函数从HuggingFace Hub中直接导入开源的工具,官网的示例用了 FLUX.1-dev 作为示例,如果你直接运行仍然是无法运行的,这个时候需要通过你的 HuggingFace 账户登录 FLUX.1-dev 的仓库:https://huggingface.co/black-forest-labs/FLUX.1-dev

【注意】:如果你没有登录账号,下图中红框是不会出现的。

登录之后会有这么一个页面,点击 Agree and access repository 按钮授权使用。
在这里插入图片描述

对示例代码进行修改以显示生成的图像,并且需要将 FLUX.1-schnell 改为 FLUX.1-dev

from smolagents import Tool
from PIL import Image
import numpy as np
import cv2

image_generation_tool = Tool.from_space(
    "black-forest-labs/FLUX.1-dev",
    name="image_generator",
    description="Generate an image from a prompt",
    api_name="/infer"
)

response = image_generation_tool("A sunny beach")
print(response)

image = Image.open(response)
image = np.array(image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)  # PIL 是 RGB,OpenCV 需要 BGR

cv2.imshow("Generated Image", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

上面代码中的 response 返回的是你 本地计算机的一个路径,比如我的是下面内容从 /private/var 开始的一长串内容。

运行:

$ python demo
Loaded as API: https://black-forest-labs-flux-1-dev.hf.space ✔
/private/var/folders/zk/vtzyjvmx7f16zrstmmd3t27w0000gn/T/gradio/9026dfa2d826f1dd7a9c5089e051f2bf775bd3e972b298c9d1801a57f2b68981/image.webp

在这里插入图片描述

【注意】:这个可能需要多运行几次,因为涉及到远程GPU资源,如果申请GPU超时了就会返回错误,但是如果你运行次数太多则会报下面的错误提示你GPU使用次数超限,需要你升级到Pro账户。

gradio_client.exceptions.AppError: The upstream Gradio app has raised an exception: You have exceeded your free GPU quota (75s requested vs. 73s left). <a style="white-space: nowrap;text-underline-offset: 2px;color: var(--body-text-color)" href="https://huggingface.co/settings/billing/subscription">Subscribe to Pro</a> to get 5x more daily usage quota.

【Tips】:如果你想直接使用这个图像生成工具,可以在浏览器中直接访问网站:https://black-forest-labs-flux-1-dev.hf.space,这个是 FLUX.1 提供的一个网页,在输入你的prompt后点击 run 即可根据你的提示词生成图像,这个过程是逐步得到的,因此刚开始你会看到一篇马赛克,稍微等待一小会儿即可得到最终结果。

在这里插入图片描述

之后官网提到了可以将这个工具作为Agent的输入,先让 Qwen2.5-Coder 对提示词进行改进,然后再调用 FLUX.1 生成图像。

from smolagents import CodeAgent, HfApiModel
from smolagents import Tool

image_generation_tool = Tool.from_space(
    "black-forest-labs/FLUX.1-schnell",
    name="image_generator",
    description="Generate an image from a prompt"
)

model = HfApiModel("Qwen/Qwen2.5-Coder-32B-Instruct")
agent = CodeAgent(tools=[image_generation_tool], model=model)

response = agent.run(
    "Improve this prompt, then generate an image of it.", additional_args={'user_prompt': 'A rabbit wearing a space suit'}
)

print(response)

【注】因为我当天的GPU资源用完了,后续恢复后我会补上相应的内容。


Use LangChain tools

在使用 LangChain 这个工具之前需要安装一些依赖:

$ pip install -U langchain-community
$ pip install langchain google-search-results -q

但是很遗憾 ,官网的demo仍然无法直接运行,因为你需要申请一个 Serp API Key

  1. 登录Serp官网:https://serpapi.com/users/welcome;
  2. 绑定/注册账号、在邮箱中验证、绑定中国区手机号并获得验证码;
  3. 白嫖一个免费的API

在这里插入图片描述
在这里插入图片描述

在获得 Serp API Key 之后需要在环境变量中注册这个Key值:

$ export SERPAPI_API_KEY="你的Serp API Key"

对示例代码进行稍微修改,添加model对象后运行代码:

from smolagents import Tool, CodeAgent, HfApiModel
from langchain.agents import load_tools

model = HfApiModel()

search_tool = Tool.from_langchain(load_tools(["serpapi"])[0])

agent = CodeAgent(tools=[search_tool], model=model)

agent.run("How many more blocks (also denoted as layers) are in BERT base encoder compared to the encoder from the architecture proposed in Attention is All You Need?")

运行结果,和之前文章中提到的一样,在默认状态下调用的是 Qwen/Qwen2.5-Coder-32B-Instruct 模型:
在这里插入图片描述


Manage your agent’s toolbox

官方提供了一个基于 HuggingFace Hub 的工具箱管理管理功能,但这个功能需要在你已经将工具上传到 Hub 的 Spaces 前提下使用,对于大多数人而言不需要将自己写的工具上传上去,因此这里就放上示例,我也没有运行测试:

from smolagents import HfApiModel
from smolagents import CodeAgent, Tool, load_tool

model_download_tool = load_tool(
    "{your_username}/hf-model-downloads",
    trust_remote_code=True
)

model = HfApiModel("Qwen/Qwen2.5-Coder-32B-Instruct")

agent = CodeAgent(tools=[], model=model, add_base_tools=True)
agent.tools[model_download_tool.name] = model_download_tool

如果你对大家开源的 Tools 感兴趣,可以进入 Spaces 网页: https://huggingface.co/spaces 去查看有哪些可用的工具,网页向下拉就可以看到上面我们使用的 FLUX.1-dev 这个工具,不同的工具有不同的授权和使用方式,需要自己去阅读感兴趣的工具如何使用。
在这里插入图片描述


官方demo中其实还介绍了使用 slugmcp 的方式调用工具,但这两种方式我没有用过,如果后续需要的话我会进行补充。


http://www.kler.cn/a/561782.html

相关文章:

  • 804 唯一摩斯密码词
  • 【leetcode hot 100 1】两数之和
  • 钉钉合同审批对接腾讯电子签,实现合同全流程自动化管理
  • 【删边问题——Tarjan求割边】
  • 宿主机的 root 是否等于 Docker 容器的 root?
  • Ajax数据采集与分析详解
  • 开源分布式存储系统在云原生数据库领域的实践与应用
  • 自定义提交按钮触发avue-form绑定的submit事件
  • AI前端开发:ScriptEcho如何降低编程培训学习成本
  • python绑定udp时使用127.0.0.1作为ip,无法sendto,报错Invalid argument
  • 无限宽度神经网络的神经正切核(Neural Tangent Kernel, NTK)
  • 多线程进阶 : 八股文面试题 一 [Java EE 多线程 锁和死锁相关问题]
  • vscode设置自动换行
  • 【WordPress】发布文章时自动通过机器人推送到钉钉
  • Pi币今日成交价格飙升,XBIT去中心化交易所助力新浪潮
  • MySQL知识
  • vue3.0将后端返回的word文件流转换为pdf并导出+html2pdf.js将页面导出为pdf
  • keil中出现Error_Handler错误的解决方法
  • 云计算模型和边缘计算模型
  • ubuntu 源码编译ffmpeg