当前位置: 首页 > article >正文

特斯拉 FSD 算法深度剖析:软件层面全解读

一、引言

特斯拉的 FSD(Full Self-Driving)系统作为自动驾驶领域的前沿成果,其软件层面的算法设计至关重要。本文将从软件的角度,深入探讨特斯拉 FSD 所采用的算法,包括感知、规划、控制等多个方面,以期为读者呈现一个全面、详细的 FSD 算法全景图。

二、特斯拉 FSD 系统概述

特斯拉 FSD 系统旨在实现车辆的完全自动驾驶,涵盖从感知周围环境到做出驾驶决策的全过程。该系统依托于特斯拉自研的硬件平台和软件算法,通过不断迭代优化,逐步提升自动驾驶的能力和安全性。

三、感知算法

(一)HydraNets 架构

  1. 输入与特征提取

    • 系统接收来自摄像头的原始视觉数据,每个摄像头采集分辨率为 1280×960、36hz、12 bit 的视频图像。

    • 通过 RegNets(Residual Neural Networks,残差神经网络)组成的特征网络结构提取图像特征,能够捕捉图像的细节以及整体上下文信息。

  2. 特征融合与任务解耦

    • 采用 BiFPNs(Bi-directional Feature Pyramid Networks,双向特征金字塔网络),通过引入双向信息流,实现多个尺度之间信息交流共享,增强了对多尺度目标的检测性能。

    • HydraNets 架构能够实现特征共享、任务解耦与特征缓存,减少了重复计算工作,允许每个子任务在主干网络上独立工作和微调,而不会影响其他子任务。

(二)BEV+Transformer 架构

  1. 鸟瞰图空间转换

    • 引入一层 BEV(Bird Eye’s View,鸟瞰图)空间转换层,用以构建网络的空间理解能力。

    • 通过“前融合”方案,将车身多个摄像头获得的视频数据直接进行融合,并采用同一套神经网络进行训练,实现特征从二维图像空间到三维向量空间的变换。

  2. Transformer 神经网络

    • 利用 Transformer 神经网络的自注意力机制(Self-Attention)和多头注意力(Multi-Head Attention)模块,将每个相机对应的图像特征转换为 Key(键)和 Value(值),然后训练模型以查表的方式自行检索需要的特征用于预测,实现对车辆周围环境的准确感知。

(三)Occupancy Network

  1. 体积占用预测

    • 能够直接在向量空间产生体积占用,对车辆周围 3D 位置被占用的概率进行预测,并可以通过视频信息对被遮挡物体情况进行即时预测。

    • 对于每个位置,Occupancy Network 能够产生一组语义,如路缘、汽车、行人和路上的碎片。

  2. Spatial Attention 机制

    • 引入带有 3D 空间位置信息的 Spatial Query,基于 Spatial Attention 注意力机制,实现对多个相机的 3D 空间位置信息和 2D 图像的信息融合,模型从中学习对应的特征关系,最终输出高维的空间特征。

(四)Lanes Network

  1. 车道拓扑信息预测

    • 运用神经网络来预测车道与车道之间的连接性,输出密集张量信息,并最终转化为车道及其连接性的信息。

    • 采用离散化处理+样条系数回归的方法,进行车道线预测,通过回归样条系数来获取两点间的精确几何形状。

  2. 车道检测与增强

    • 采用涵盖有关交叉口内车道拓扑、各条道路上的车道数等信息的低精度地图,对车道检测神经网络生成的丰富视觉表示进行增强。

四、规划算法

(一)交互搜索框架

  1. 候选轨迹生成

    • 自动驾驶系统首先收集车道、障碍物和周围移动物体的视觉测量数据,这些数据被表示为稀疏抽象(Sparse Abstraction)和潜在特征(Latent Features)。

    • 利用这些信息生成一组候选目标,使用经典优化方法与神经网络规划器来创建初始轨迹。

  2. 轨迹优化与评估

    • 采用递增式的方法,在关键约束的基础上,不断加入新的约束条件,利用较少约束下的最优解作为初值,逐步求解更复杂的优化问题。

    • 构建轻量级可查询网络,该网络由人类驾驶数据与宽松时间限制下的计算数据进行训练,能够在 100 微秒内对规划轨迹进行评分,显著提升规划效率。

(二)多代理联合轨迹规划

  1. 问题建模

    • 自动驾驶系统需要解决多代理联合轨迹规划的问题,考虑自己和所有其他车辆、行人的运动轨迹,对所有可能的行驶方案进行评估,快速选出最优行驶方案。

  2. 评分与决策树剪枝

    • 主要从四个方面对规划轨迹进行评分,进行决策树剪枝:碰撞检查、舒适性分析、干预可能性、与人类驾驶接近度。

    • 通过综合评估,特斯拉规划系统能够高效地筛选出最优路径,优化自动驾驶的决策过程。

五、控制算法

  1. 车辆动力学模型

    • 特斯拉 FSD 系统中的控制算法基于车辆动力学模型,考虑车辆的物理特性,如质量、轮胎摩擦力、转向系统等,以实现精确的车辆控制。

  2. 反馈控制与前馈控制

    • 采用反馈控制机制,根据车辆的实际状态与规划的轨迹之间的偏差,实时调整车辆的


http://www.kler.cn/a/562889.html

相关文章:

  • 登录逻辑结合redis
  • 【Linux】vim 设置
  • Selenium 与 Coze 集成
  • 【AI+智造】基于DeepSeek的船舶海工设备多维度数据分析技术方案——以南通船舶制造企业为例
  • Element Plus: el-card的内容滚动问题
  • 钉钉MAKE AI生态大会思考
  • 一文讲解Redis中热点Key的重建、可能会发生的问题及解决方案
  • JVM 简单内存结构及例子
  • 前端(vue)学习笔记(CLASS 2):进阶
  • Rk3568驱动开发_点亮led灯(手动挡)_5
  • 认证与授权#1#Token和Cookie验证方式对比
  • 学习Java数组操作:从基础到高级技巧详解
  • 【算法工程】大模型局限性新发现之解决能连github但无法clone项目的问题
  • Java 设计模式 面试题及答案整理,最新面试题
  • 深度学习-133-LangGraph之应用实例(二)使用面向过程和面向对象的两种编程方式构建带记忆的聊天机器人
  • AcWing 蓝桥杯集训·每日一题2025·密接牛追踪2
  • 正则化技术
  • 【React】合成事件原理
  • 力扣hot100刷题——11~20
  • 计算机主板南桥与北桥核心架构概论