当前位置: 首页 > article >正文

3-提前结束训练

一、核心类

class EarlyStopping:
    # YOLOv5 simple early stopper
    def __init__(self, patience=30):
        self.best_fitness = 0.0  # i.e. mAP
        self.best_epoch = 0
        self.patience = patience or float('inf')  # epochs to wait after fitness stops improving to stop
        self.possible_stop = False  # possible stop may occur next epoch

    def __call__(self, epoch, fitness):#fitness最佳参数,
        if fitness >= self.best_fitness:  # >= 0 to allow for early zero-fitness stage of training
            self.best_epoch = epoch
            self.best_fitness = fitness
        delta = epoch - self.best_epoch  # epochs without improvement 当前epoch与最优epoch的差值,大于patience则提前结束  重点
        self.possible_stop = delta >= (self.patience - 1)  # possible stop may occur next epoch
        stop = delta >= self.patience  # stop training if patience exceeded
        if stop:
            LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
                        f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
                        f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
                        f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.')
        return stop

二、创建对象
stopper, stop = EarlyStopping(patience=opt.patience), False

三、提前结束判断

...
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        callbacks.run('on_train_epoch_start')
        model.train()
        .....
        #最佳参数判断
		fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
        stop = stopper(epoch=epoch, fitness=fi)  # early stop check
		....
		if stop:
            break  # must break all DDP ranks
        

http://www.kler.cn/a/562906.html

相关文章:

  • mac升级系统后聚焦Spotlight Search功能无法使用,进入安全模式可解
  • 【AIGC系列】3:Stable Diffusion模型介绍
  • 智慧物流小程序(论文源码调试讲解)
  • 最新版 (持续更新)docker 加速源 linux yum 源
  • 【Java企业生态系统的演进】从单体J2EE到云原生微服务
  • 现代前端框架渲染机制深度解析:虚拟DOM到编译时优化
  • 【MySql】EXPLAIN执行计划全解析:15个字段深度解读与调优指南
  • 渗透第二次作业
  • Spring Boot启动过程?
  • MySQL的存储引擎
  • 鸿蒙NEXT开发-视频播放绘图能力
  • 每天练打字15:时隔多日后回归,目前赛文速度110.97
  • 【漫话机器学习系列】105.学习速率(Learning Rate)
  • ‌Selenium三大等待方式详解
  • 鸿蒙5.0实战案例:基于RichEditor的评论编辑
  • 特斯拉 FSD 算法深度剖析:软件层面全解读
  • 登录逻辑结合redis
  • 【Linux】vim 设置
  • Selenium 与 Coze 集成
  • 【AI+智造】基于DeepSeek的船舶海工设备多维度数据分析技术方案——以南通船舶制造企业为例