开源模型应用落地-DeepSeek-R1-Distill-Qwen-7B-Docker助力-模型部署 “光速” 指南
一、前言
在人工智能的浪潮里,大语言模型不断迭代更新,DeepSeek-R1-Distill-Qwen-7B 模型凭借出色的表现,吸引着无数开发者的目光。然而,想要将这个强大的模型顺利部署并投入使用,过程却并不轻松。传统的部署方式仿佛布满荆棘,从底层环境搭建到各种依赖项的适配,每一步都可能遭遇阻碍。通过Docker助力,它将成为我们披荆斩棘的利刃,引领大家快速完成模型部署。
二、术语
2.1. Docker
是一个开源的容器化平台,允许开发者将应用及其依赖打包成轻量级、可移植的容器。这些容器可以在任何支持 Docker 的环境中运行,从而确保应用在不同环境中的一致性。Docker 提供了简化的开发、测试和部署流程,使得应用的交付更加高效和灵活,同时也支持微服务架构的实现。通过隔离和资源管理,Docker 使得应用的扩展和维护变得更加便捷。
2.2. vLLM
vLLM是一个开源的大模型推理加速框架,通过PagedAttention高效地管理attention中缓存的张量,实现了比HuggingFace Transformers高14-24倍的吞吐量。