AF3 pair_sequences函数解读
AlphaFold3 msa_pairing模块的pair_sequences函数的核心目标是基于 MSA(多序列比对)中的物种信息,在多条链之间建立 MSA 配对索引,从而帮助 AlphaFold3 捕捉共进化信息,提升蛋白复合物预测的准确性。函数pair_sequences 通过调用 _make_msa_df、 _create_species_dict 以及_match_rows_by_sequence_similarity实现其功能。
源代码:
def pair_sequences(
examples: List[Mapping[str, np.ndarray]],
) -> Dict[int, np.ndarray]:
"""Returns indices for paired MSA sequences across chains."""
num_examples = len(examples)
all_chain_species_dict = []
common_species = set()
for chain_features in examples:
msa_df = _make_msa_df(chain_features)
species_dict = _create_species_dict(msa_df)
all_chain_species_dict.append(species_dict)
common_species.update(set(species_dict))
common_species = sorted(common_species)
common_species.remove(b'') # Remove target sequence species.
all_paired_msa_rows = [np.zeros(len(examples), int)]
all_paired_msa_rows_dict = {k: [] for k in range(num_examples)}
all_paired_msa_rows_dict[num_examples] = [np.zeros(len(examples), int)]
for species in common_species:
if not species:
continue
this_species_msa_dfs = []
species_dfs_present = 0
for species_dict in all_chain_species_dict:
if species in species_dict:
this_species_msa_dfs.append(species_dict[species])
species_dfs_present += 1
else:
this_species_msa_dfs.append(None)
# Skip species that are present in only one chain.
if species_dfs_present <= 1:
continue
if np.any(
np.array([len(species_df) for species_df in
this_species_msa_dfs if
isinstance(species_df, pd.DataFrame)]) > 600):
continue
paired_msa_rows = _match_rows_by_sequence_similarity(this_species_msa_dfs)
all_paired_msa_rows.extend(paired_msa_rows)
all_paired_msa_rows_dict[species_dfs_present].extend(paired_msa_rows)
all_paired_msa_rows_dict = {
num_examples: np.array(paired_msa_rows) for
num_examples, paired_msa_rows in all_paired_msa_rows_dict.items()
}
return all_paired_msa_rows_dict
代码解读:
函数输入
def pair_sequences(examples: List[Mapping[str, np.ndarray]]) -> Dict[int, np.ndarray]
examples
:包含多条链的 MSA 信息,每个元素是一个字典,代表一条蛋白链的 MSA 相关特征。
- 例如,
examples[0]
可能对应链 A 的 MSA 特征,examples[1]
可能对应链 B 的 MSA 特征。
代码执行过程
1️⃣ 提取所有链的 MSA 并构建物种索引
num_examples = len(examples)
all_chain_species_dict = []
common_species = set()
for chain_features in examples: