实例分割 | yolov11训练自己的数据集
前言
因工作要求使用的都是yolov5系列的模型,今天学习一下最先进的yolov11,记录一下环境配置及训练过程。
1.项目下载及环境安装
源码位置:yolov11
可以看到,这里要求python版本大于等于3.8,我这里安装python3.10.
conda create -n yolov11 python=3.10
conda activate yolov11
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
2.标注自己的数据集
标注实例分割数据集的工具有很多,这里建议labelme和AnyLabeling任意选一个。
如图所示,标注后的数据集是json格式的:
我们需要将其转成yolo系列需要的txt格式。
json转txt格式转化代码:
# json2txt.py
import cv2
import os
import json
import glob
import numpy as np
def convert_json_label_to_yolov_seg_label():
json_path = "F:/Desktop/hand/labels" # 本地json路径
json_files = glob.glob(json_path + "/*.json")
print(json_files)
# 指定输出文件夹
output_folder = "F:/Desktop/hand/labels_txt" # txt存放路径
if not os.path.exists(output_folder):
os.makedirs(output_folder)
for json_file in json_files:
print(json_file)
with open(json_file, 'r') as f:
json_info = json.load(f)
img = cv2.imread(os.path.join(json_path, json_info["imagePath"]))
height, width, _ = img.shape
np_w_h = np.array([[width, height]], np.int32)
txt_file = os.path.join(output_folder, os.path.basename(json_file).replace(".json", ".txt"))
with open(txt_file, "w") as f:
for point_json in json_info["shapes"]:
txt_content = ""
np_points = np.array(point_json["points"], np.int32)
norm_points = np_points / np_w_h
norm_points_list = norm_points.tolist()
txt_content += "0 " + " ".join(
[" ".join([str(cell[0]), str(cell[1])]) for cell in norm_points_list]) + "\n"
f.write(txt_content)
convert_json_label_to_yolov_seg_label()
转换后是这样的:
分割数据集,我们需要将转化成txt的数据集分割成训练集、验证集和测试集,这是分割代码:
# txt_split.py
# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os
# 原始路径
image_original_path = "hhh/images/"
label_original_path = "hhh/labels_txt/"
cur_path = os.getcwd()
#cur_path = 'D:/image_denoising_test/denoise/'
# 训练集路径
train_image_path = os.path.join(cur_path, "datasets/images/train/")
train_label_path = os.path.join(cur_path, "datasets/labels/train/")
# 验证集路径
val_image_path = os.path.join(cur_path, "datasets/images/val/")
val_label_path = os.path.join(cur_path, "datasets/labels/val/")
# 测试集路径
test_image_path = os.path.join(cur_path, "datasets/images/test/")
test_label_path = os.path.join(cur_path, "datasets/labels/test/")
# 训练集目录
list_train = os.path.join(cur_path, "datasets/train.txt")
list_val = os.path.join(cur_path, "datasets/val.txt")
list_test = os.path.join(cur_path, "datasets/test.txt")
train_percent = 0.8
val_percent = 0.1
test_percent = 0.1
def del_file(path):
for i in os.listdir(path):
file_data = path + "\\" + i
os.remove(file_data)
def mkdir():
if not os.path.exists(train_image_path):
os.makedirs(train_image_path)
else:
del_file(train_image_path)
if not os.path.exists(train_label_path):
os.makedirs(train_label_path)
else:
del_file(train_label_path)
if not os.path.exists(val_image_path):
os.makedirs(val_image_path)
else:
del_file(val_image_path)
if not os.path.exists(val_label_path):
os.makedirs(val_label_path)
else:
del_file(val_label_path)
if not os.path.exists(test_image_path):
os.makedirs(test_image_path)
else:
del_file(test_image_path)
if not os.path.exists(test_label_path):
os.makedirs(test_label_path)
else:
del_file(test_label_path)
def clearfile():
if os.path.exists(list_train):
os.remove(list_train)
if os.path.exists(list_val):
os.remove(list_val)
if os.path.exists(list_test):
os.remove(list_test)
def main():
mkdir()
clearfile()
file_train = open(list_train, 'w')
file_val = open(list_val, 'w')
file_test = open(list_test, 'w')
total_txt = os.listdir(label_original_path)
num_txt = len(total_txt)
list_all_txt = range(num_txt)
num_train = int(num_txt * train_percent)
num_val = int(num_txt * val_percent)
num_test = num_txt - num_train - num_val
train = random.sample(list_all_txt, num_train)
# train从list_all_txt取出num_train个元素
# 所以list_all_txt列表只剩下了这些元素
val_test = [i for i in list_all_txt if not i in train]
# 再从val_test取出num_val个元素,val_test剩下的元素就是test
val = random.sample(val_test, num_val)
print("训练集数目:{}, 验证集数目:{}, 测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))
for i in list_all_txt:
name = total_txt[i][:-4]
srcImage = image_original_path + name + '.jpg'
srcLabel = label_original_path + name + ".txt"
if i in train:
dst_train_Image = train_image_path + name + '.jpg'
dst_train_Label = train_label_path + name + '.txt'
shutil.copyfile(srcImage, dst_train_Image)
shutil.copyfile(srcLabel, dst_train_Label)
file_train.write(dst_train_Image + '\n')
elif i in val:
dst_val_Image = val_image_path + name + '.jpg'
dst_val_Label = val_label_path + name + '.txt'
shutil.copyfile(srcImage, dst_val_Image)
shutil.copyfile(srcLabel, dst_val_Label)
file_val.write(dst_val_Image + '\n')
else:
dst_test_Image = test_image_path + name + '.jpg'
dst_test_Label = test_label_path + name + '.txt'
shutil.copyfile(srcImage, dst_test_Image)
shutil.copyfile(srcLabel, dst_test_Label)
file_test.write(dst_test_Image + '\n')
file_train.close()
file_val.close()
file_test.close()
if __name__ == "__main__":
main()
3.编写训练代码并训练
我这里习惯使用代码训练,还有命令训练,如果感兴趣的朋友可以去官网了解。
# train.py
from ultralytics import YOLO
if __name__ == '__main__':
model = YOLO(r'ultralytics/cfg/models/11/yolo11-seg.yaml')
model.train(data=r'config.yaml',
imgsz=640,
epochs=800,
single_cls=True,
batch=16,
workers=10,
device='0',
)
配置文件:
# config.yaml
path: ../datasets/images # 数据集所在路径
train: train # 数据集路径下的train.txt
val: val # 数据集路径下的val.txt
test: test # 数据集路径下的test.txt
# Classes
names:
0: class1_name
1: class2_name
2: class3_name
3: class4_name
4: class5_name
这里的path改成你的数据集位置,如果txt_split.py在项目根目录下运行则不需要修改路径,只需要修改类别即可。
修改之后,只需要python train.py运行即可。
测试代码:
# test.py
from ultralytics import YOLO
# 加载训练好的模型,改为自己的路径
model = YOLO('runs/train/exp22/weights/best.pt') #修改为训练好的路径
source = '11.jpg' #修改为自己的图片路径及文件名
# 运行推理,并附加参数
model.predict(source, save=True, imgsz=640)
参考
语义分割:YOLOv11的分割模型训练自己的数据集(从代码下载到实例测试)
总结
因为项目还没完成,主要精力在此项目中,过程写的有点仓促,后面会慢慢优化文章质量,补全没完成的部分。