当前位置: 首页 > article >正文

Python 绘制迷宫游戏,自带最优解路线

1、需要安装pygame
2、上下左右移动,空格实现物体所在位置到终点的路线,会有虚线绘制。
在这里插入图片描述

import pygame
import random
import math


# 迷宫单元格类
class Cell:
    def __init__(self, x, y):
        self.x = x
        self.y = y
        self.walls = {'top': True, 'right': True, 'bottom': True, 'left': True}
        self.visited = False
        self.is_obstacle = False

    def draw(self, screen, cell_size):
        x = self.x * cell_size
        y = self.y * cell_size
        if self.walls['top']:
            pygame.draw.line(screen, (0, 0, 0), (x, y), (x + cell_size, y), 2)
        if self.walls['right']:
            pygame.draw.line(screen, (0, 0, 0), (x + cell_size, y), (x + cell_size, y + cell_size), 2)
        if self.walls['bottom']:
            pygame.draw.line(screen, (0, 0, 0), (x + cell_size, y + cell_size), (x, y + cell_size), 2)
        if self.walls['left']:
            pygame.draw.line(screen, (0, 0, 0), (x, y + cell_size), (x, y), 2)
        if self.is_obstacle:
            pygame.draw.rect(screen, (128, 128, 128), (x, y, cell_size, cell_size))

    def check_neighbors(self, grid, cols, rows):
        neighbors = []
        if self.x > 0:
            left = grid[self.y][self.x - 1]
            if not left.visited:
                neighbors.append(left)
        if self.x < cols - 1:
            right = grid[self.y][self.x + 1]
            if not right.visited:
                neighbors.append(right)
        if self.y > 0:
            top = grid[self.y - 1][self.x]
            if not top.visited:
                neighbors.append(top)
        if self.y < rows - 1:
            bottom = grid[self.y + 1][self.x]
            if not bottom.visited:
                neighbors.append(bottom)
        if neighbors:
            return random.choice(neighbors)
        else:
            return None


# 移除两个单元格之间的墙
def remove_walls(current, next_cell):
    dx = current.x - next_cell.x
    if dx == 1:
        current.walls['left'] = False
        next_cell.walls['right'] = False
    elif dx == -1:
        current.walls['right'] = False
        next_cell.walls['left'] = False
    dy = current.y - next_cell.y
    if dy == 1:
        current.walls['top'] = False
        next_cell.walls['bottom'] = False
    elif dy == -1:
        current.walls['bottom'] = False
        next_cell.walls['top'] = False


# 生成迷宫
def generate_maze(grid, cols, rows):
    stack = []
    current = grid[0][0]
    current.visited = True
    stack.append(current)
    while stack:
        current = stack[-1]
        next_cell = current.check_neighbors(grid, cols, rows)
        if next_cell:
            next_cell.visited = True
            stack.append(next_cell)
            remove_walls(current, next_cell)
        else:
            stack.pop()


# 随机添加障碍物
def add_obstacles(grid, cols, rows, obstacle_ratio=0.3):
    obstacle_cells = []
    num_obstacles = int(cols * rows * obstacle_ratio)
    while len(obstacle_cells) < num_obstacles:
        x = random.randint(0, cols - 1)
        y = random.randint(0, rows - 1)
        if (x, y) not in [(0, 0), (cols - 1, rows - 1)] and not grid[y][x].is_obstacle:
            grid[y][x].is_obstacle = True
            obstacle_cells.append((x, y))
    return obstacle_cells


# 检查从起点到终点是否有路径
def has_path(grid, start, end):
    path = find_path(grid, start, end)
    return bool(path)


# 移除障碍物直到有路径
def ensure_path_exists(grid, start, end, obstacle_cells):
    random.shuffle(obstacle_cells)
    while not has_path(grid, start, end) and obstacle_cells:
        x, y = obstacle_cells.pop()
        grid[y][x].is_obstacle = False


# 绘制迷宫
def draw_maze(screen, grid, cell_size, cols, rows):
    for i in range(rows):
        for j in range(cols):
            grid[i][j].draw(screen, cell_size)


# 绘制起点和终点
def draw_start_end(screen, cell_size, start, end):
    start_x = start[0] * cell_size + cell_size // 2
    start_y = start[1] * cell_size + cell_size // 2
    end_x = end[0] * cell_size + cell_size // 2
    end_y = end[1] * cell_size + cell_size // 2
    pygame.draw.circle(screen, (0, 255, 0), (start_x, start_y), cell_size // 3)
    pygame.draw.circle(screen, (255, 0, 0), (end_x, end_y), cell_size // 3)


# 绘制移动的物体
def draw_player(screen, cell_size, player_pos):
    player_x = player_pos[0] * cell_size + cell_size // 2
    player_y = player_pos[1] * cell_size + cell_size // 2
    pygame.draw.circle(screen, (0, 0, 255), (player_x, player_y), cell_size // 3)


# 检查是否可以移动
def can_move(grid, player_pos, direction):
    x, y = player_pos
    if direction == 'up':
        return y > 0 and not grid[y][x].walls['top'] and not grid[y - 1][x].is_obstacle
    elif direction == 'down':
        return y < len(grid) - 1 and not grid[y][x].walls['bottom'] and not grid[y + 1][x].is_obstacle
    elif direction == 'left':
        return x > 0 and not grid[y][x].walls['left'] and not grid[y][x - 1].is_obstacle
    elif direction == 'right':
        return x < len(grid[0]) - 1 and not grid[y][x].walls['right'] and not grid[y][x + 1].is_obstacle


# 广度优先搜索找到最优路径
def find_path(grid, start, end):
    queue = [(start, [start])]
    visited = set()
    while queue:
        (x, y), path = queue.pop(0)
        if (x, y) == end:
            return path
        if (x, y) not in visited:
            visited.add((x, y))
            if can_move(grid, (x, y), 'up'):
                new_path = list(path)
                new_path.append((x, y - 1))
                queue.append(((x, y - 1), new_path))
            if can_move(grid, (x, y), 'down'):
                new_path = list(path)
                new_path.append((x, y + 1))
                queue.append(((x, y + 1), new_path))
            if can_move(grid, (x, y), 'left'):
                new_path = list(path)
                new_path.append((x - 1, y))
                queue.append(((x - 1, y), new_path))
            if can_move(grid, (x, y), 'right'):
                new_path = list(path)
                new_path.append((x + 1, y))
                queue.append(((x + 1, y), new_path))
    return []


# 绘制虚线
def draw_dashed_line(screen, color, start_pos, end_pos, dash_length=5):
    dx = end_pos[0] - start_pos[0]
    dy = end_pos[1] - start_pos[1]
    distance = math.sqrt(dx ** 2 + dy ** 2)
    num_dashes = int(distance / dash_length)
    for i in range(num_dashes):
        if i % 2 == 0:
            start = (start_pos[0] + dx * i / num_dashes, start_pos[1] + dy * i / num_dashes)
            end = (start_pos[0] + dx * (i + 1) / num_dashes, start_pos[1] + dy * (i + 1) / num_dashes)
            pygame.draw.line(screen, color, start, end, 2)


# 显示提示信息
def show_message(screen, message, font, color, position):
    text = font.render(message, True, color)
    screen.blit(text, position)


# 主函数
def main():
    pygame.init()
    cols = 35
    rows = 35
    cell_size = 20
    width = cols * cell_size
    height = rows * cell_size
    screen = pygame.display.set_mode((width, height))
    pygame.display.set_caption("Random Maze")

    # 创建迷宫网格
    grid = [[Cell(j, i) for j in range(cols)] for i in range(rows)]

    # 生成迷宫
    generate_maze(grid, cols, rows)

    # 定义起点和终点
    start = (0, 0)
    end = (cols - 1, rows - 1)

    # 随机添加障碍物
    obstacle_cells = add_obstacles(grid, cols, rows)

    # 确保有路径
    ensure_path_exists(grid, start, end, obstacle_cells)

    # 初始化玩家位置
    player_pos = start

    font = pygame.font.Font(None, 36)
    success_text = font.render("Successfully!!!", True, (0, 255, 0))
    help_text = font.render("", True, (0, 0, 0))
    success = False
    auto_move = False

    running = True
    while running:
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                running = False
            elif event.type == pygame.KEYDOWN and not success:
                if event.key == pygame.K_UP:
                    if can_move(grid, player_pos, 'up'):
                        player_pos = (player_pos[0], player_pos[1] - 1)
                elif event.key == pygame.K_DOWN:
                    if can_move(grid, player_pos, 'down'):
                        player_pos = (player_pos[0], player_pos[1] + 1)
                elif event.key == pygame.K_LEFT:
                    if can_move(grid, player_pos, 'left'):
                        player_pos = (player_pos[0] - 1, player_pos[1])
                elif event.key == pygame.K_RIGHT:
                    if can_move(grid, player_pos, 'right'):
                        player_pos = (player_pos[0] + 1, player_pos[1])
                elif event.key == pygame.K_SPACE:
                    auto_move = True
                    path = find_path(grid, player_pos, end)
                    path_index = 0

        screen.fill((255, 255, 255))
        draw_maze(screen, grid, cell_size, cols, rows)
        draw_start_end(screen, cell_size, start, end)

        # 绘制路径
        if 'path' in locals() and path:
            for i in range(len(path) - 1):
                start_point = (path[i][0] * cell_size + cell_size // 2, path[i][1] * cell_size + cell_size // 2)
                end_point = (path[i + 1][0] * cell_size + cell_size // 2, path[i + 1][1] * cell_size + cell_size // 2)
                draw_dashed_line(screen, (255, 0, 0), start_point, end_point)

        draw_player(screen, cell_size, player_pos)

        # 显示提示信息
        show_message(screen, "", font, (0, 0, 0), (10, 10))

        if auto_move and 'path' in locals() and path_index < len(path):
            player_pos = path[path_index]
            path_index += 1
            if player_pos == end:
                auto_move = False

        if player_pos == end:
            success = True
            screen.blit(success_text,
                        (width // 2 - success_text.get_width() // 2, height // 2 - success_text.get_height() // 2))

        pygame.display.flip()
        pygame.time.delay(100)

    pygame.quit()


if __name__ == "__main__":
    main()


http://www.kler.cn/a/568281.html

相关文章:

  • (学习总结26)Linux工具:make/Makefile 自动化构建、Git 版本控制器 和 gdb/cgdb 调试器
  • 机器学习中的数据预处理
  • Python Web 开发中的 FastAPI 性能瓶颈分析与优化策略
  • DeepSeek开源周 Day04:从DualPipe聊聊大模型分布式训练的并行策略
  • SQL Server查询计划操作符(7.3)——查询计划相关操作符(7)
  • 单点登录原理和JWT实现
  • C++蓝桥杯基础篇(六)
  • vim:基础配置
  • Linux--输入输出重定向、父进程与子进程的继承关系
  • 如何管理路由器
  • 金融赋能绍兴纺织 民生银行助力外贸中小微企业“走出去”
  • 新一代跨境电商ERP系统:从订单到发货的全流程自动化管理
  • windows下适用msvc编译ffmpeg 适用于ffmpeg-7.1
  • php 的 composer.phar 是干什么用的?
  • Vue3实现文件上传、下载及预览全流程详解(含完整接口调用)
  • 加油站小程序实战教程03站点管理
  • 《从0到1:用Python在鸿蒙系统开发安防图像分类AI功能》
  • Ubuntu 下 nginx-1.24.0 源码分析 - ngx_pstrdup函数
  • 计算机视觉(opencv-python)入门之图像的读取,显示,与保存
  • 【每日八股】MySQL篇(三):索引(上)