当前位置: 首页 > article >正文

OpenGL ES -> GLSurfaceView纹理贴图

贴图

在这里插入图片描述

XML文件

<?xml version="1.0" encoding="utf-8"?>
<com.example.myapplication.MyGLSurfaceView
	xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="match_parent"
    android:layout_height="match_parent" />

自定义GLSurfaceView代码

class MyGLSurfaceView(context: Context, attrs: AttributeSet) : GLSurfaceView(context, attrs) {
    private var mRenderer = MyGLRenderer(context)

    init {
        // 设置 OpenGL ES 3.0 版本
        setEGLContextClientVersion(3)
        setRenderer(mRenderer)
        // 设置渲染模式, 仅在需要重新绘制时才进行渲染,以节省资源
        renderMode = RENDERMODE_WHEN_DIRTY
    }
}

自定义GLSurfaceView.Renderer代码

class MyGLRenderer(private val mContext: Context) : GLSurfaceView.Renderer {
    private var mDrawData: DrawData? = null

    override fun onSurfaceCreated(gl: GL10?, config: EGLConfig?) {
        // 当 Surface 创建时调用, 进行 OpenGL ES 环境的初始化操作, 设置清屏颜色为青蓝色 (Red=0, Green=0.5, Blue=0.5, Alpha=1)
        GLES30.glClearColor(0.0f, 0.5f, 0.5f, 1.0f)
        mDrawData = DrawData().apply {
            initVertexBuffer()
            initShader()
            mTextureID[0] = loadTexture(mContext, R.drawable.bitmap_shader)
        }
    }

    override fun onSurfaceChanged(gl: GL10?, width: Int, height: Int) {
        // 当 Surface 尺寸发生变化时调用,例如设备的屏幕方向发生改变, 设置视口为新的尺寸,视口是指渲染区域的大小
        GLES30.glViewport(0, 0, width, height)
        mDrawData?.computeMVPMatrix(width.toFloat(), height.toFloat())
    }

    override fun onDrawFrame(gl: GL10?) {
        // 每一帧绘制时调用, 清除颜色缓冲区
        GLES30.glClear(GLES30.GL_COLOR_BUFFER_BIT)
        mDrawData?.enableTexture()
        mDrawData?.drawSomething()
    }
}

GLSurfaceView.Renderer需要的绘制数据

class DrawData {
    private var mProgram: Int = -1
    private var NO_OFFSET = 0
    private val VERTEX_POS_DATA_SIZE = 3
    private val TEXTURE_POS_DATA_SIZE = 2

    // VBO IDs
    private var mVertexVBO = 0
    private var mTexCoordVBO = 0

    // 最终变化矩阵
    private val mMVPMatrix = FloatArray(16)

    // 投影矩阵
    private val mProjectionMatrix = FloatArray(16)

    // 相机矩阵
    private val mViewMatrix = FloatArray(16)

    private var mViewPortRatio = 1f

    // 纹理ID
    var mTextureID = IntArray(1)

    // 1. 准备顶点坐标,分配直接内存
    // OpenGL ES坐标系:原点在中心,X轴向右为正,Y轴向上为正,Z轴向外为正
    val vertex = floatArrayOf(
        -1.0f, 1.0f, 0.0f, // 左上
        -1.0f, -1.0f, 0.0f, // 左下
        1.0f, 1.0f, 0.0f, // 右上
        1.0f, -1.0f, 0.0f, // 右下
    )

    val vertexBuffer = ByteBuffer.allocateDirect(vertex.size * 4)
        .order(ByteOrder.nativeOrder())
        .asFloatBuffer()


    // 2. 准备纹理坐标,分配直接内存
    // 纹理坐标系:原点在左下角,X轴向右为正,Y轴向上为正
    val textureCoords = floatArrayOf(
        0.0f, 1.0f, // 左上
        0.0f, 0.0f, // 左下
        1.0f, 1.0f, // 右上
        1.0f, 0.0f, // 右下
    )

    val textureBuffer = ByteBuffer.allocateDirect(textureCoords.size * 4)
        .order(ByteOrder.nativeOrder())
        .asFloatBuffer()

    // 3. 创建顶点缓冲区对象
    fun initVertexBuffer() {
        // 初始化顶点坐标缓冲区
        vertexBuffer.put(vertex)
        vertexBuffer.position(NO_OFFSET)

        // 初始化纹理坐标缓冲区
        textureBuffer.put(textureCoords)
        textureBuffer.position(NO_OFFSET)

        // 创建两个VBO,一个用于顶点坐标,一个用于纹理坐标
        val vbo = IntArray(2)
        GLES30.glGenBuffers(vbo.size, vbo, NO_OFFSET) // 生成一个缓冲区对象ID,并存储在数组 vbo 中,存放位置为0

        // 绑定顶点缓冲区
        GLES30.glBindBuffer(GLES30.GL_ARRAY_BUFFER, vbo[0])
        GLES30.glBufferData(
            GLES30.GL_ARRAY_BUFFER,
            vertex.size * 4, // 数据总字节数 = 顶点数 * Float占4字节
            vertexBuffer,
            GLES30.GL_STATIC_DRAW
        )

        // 绑定纹理缓冲区
        GLES30.glBindBuffer(GLES30.GL_ARRAY_BUFFER, vbo[1])
        GLES30.glBufferData(
            GLES30.GL_ARRAY_BUFFER,
            textureCoords.size * 4, // 数据总字节数 = 顶点数 * Float占4字节
            textureBuffer,
            GLES30.GL_STATIC_DRAW
        )

        mVertexVBO = vbo[0]
        mTexCoordVBO = vbo[1]
    }

    // 4. 初始化着色器程序
    fun initShader() {
        val vertexShaderCode = """#version 300 es
                uniform mat4 uMVPMatrix; // 变换矩阵
                in vec4 aPosition; // 顶点坐标
                in vec2 aTexCoord; // 纹理坐标 
                out vec2 vTexCoord; 
                void main() {
                    // 输出顶点坐标和纹理坐标到片段着色器
                    gl_Position = uMVPMatrix * aPosition; 
                    vTexCoord = aTexCoord;
                }""".trimIndent()       // 顶点着色器代码

        val fragmentShaderCode = """#version 300 es
                precision mediump float; // 定义float 精度为 mediump
                uniform sampler2D uTexture; // 纹理取样器
                in vec2 vTexCoord; // 接收顶点着色器传递过来的纹理坐标
                out vec4 fragColor; // 输出片段颜色
                void main() {
                    fragColor = texture(uTexture, vTexCoord); 
                }""".trimIndent()


        // 加载顶点着色器和片段着色器, 并创建着色器程序
        val vertexShader = LoadShaderUtil.loadShader(GLES30.GL_VERTEX_SHADER, vertexShaderCode)
        val fragmentShader = LoadShaderUtil.loadShader(GLES30.GL_FRAGMENT_SHADER, fragmentShaderCode)
        mProgram = GLES30.glCreateProgram()
        GLES30.glAttachShader(mProgram, vertexShader)
        GLES30.glAttachShader(mProgram, fragmentShader)
        GLES30.glLinkProgram(mProgram)
        GLES30.glUseProgram(mProgram)

        GLES30.glDeleteShader(vertexShader)
        GLES30.glDeleteShader(fragmentShader)
    }

    // 5. 计算变换矩阵
    fun computeMVPMatrix(width: Float, height: Float) {
        // 正交投影矩阵
        takeIf { width > height }?.let {
            mViewPortRatio = width / height
            Matrix.orthoM(
                mProjectionMatrix, // 正交投影矩阵
                NO_OFFSET, // 偏移量
                -mViewPortRatio, // 近平面的坐标系左边界
                mViewPortRatio, // 近平面的坐标系右边界
                -1f, // 近平面的坐标系的下边界
                1f, // 近平面坐标系的上边界
                0f, // 近平面距离相机距离
                1f // 远平面距离相机距离
            )
        } ?: run {
            mViewPortRatio = height / width
            Matrix.orthoM(
                mProjectionMatrix, // 正交投影矩阵
                NO_OFFSET, // 偏移量
                -1f, // 近平面坐标系左边界
                1f, // 近平面坐标系右边界
                -mViewPortRatio, // 近平面坐标系下边界
                mViewPortRatio, // 近平面坐标系上边界
                0f, // 近平面距离相机距离
                1f // 远平面距离相机距离
            )
        }

        // 设置相机矩阵
        // 相机位置(0f, 0f, 1f)
        // 物体位置(0f, 0f, 0f)
        // 相机方向(0f, 1f, 0f)
        Matrix.setLookAtM(
            mViewMatrix, // 相机矩阵
            NO_OFFSET, // 偏移量
            0f, // 相机位置x
            0f, // 相机位置y
            1f, // 相机位置z
            0f, // 物体位置x
            0f, // 物体位置y
            0f, // 物体位置z
            0f, // 相机上方向x
            1f, // 相机上方向y
            0f // 相机上方向z
        )

        // 最终变化矩阵
        Matrix.multiplyMM(
            mMVPMatrix, // 最终变化矩阵
            NO_OFFSET, // 偏移量
            mProjectionMatrix, // 投影矩阵
            NO_OFFSET, // 投影矩阵偏移量
            mViewMatrix, // 相机矩阵
            NO_OFFSET // 相机矩阵偏移量
        )

        // 纹理坐标系为(0, 0), (1, 0), (1, 1), (0, 1)的正方形逆时针坐标系,从Bitmap生成纹理,即像素拷贝到纹理坐标系
        // 变换矩阵需要加上一个y方向的翻转, x方向和z方向不改变
        Matrix.scaleM(
            mMVPMatrix,
            NO_OFFSET,
            1f,
            -1f,
            1f,
        )
    }

    // 6. 使用着色器程序绘制图形
    fun drawSomething() {
        // 激活变换矩阵
        val matrixHandle = GLES30.glGetUniformLocation(mProgram, "uMVPMatrix")
        GLES30.glUniformMatrix4fv(matrixHandle, 1, false, mMVPMatrix, NO_OFFSET)

        // 输入顶点数据
        val positionHandle = GLES30.glGetAttribLocation(mProgram, "aPosition")
        GLES30.glEnableVertexAttribArray(positionHandle)
        GLES30.glBindBuffer(GLES30.GL_ARRAY_BUFFER, mVertexVBO)
        GLES30.glVertexAttribPointer(
            positionHandle,
            VERTEX_POS_DATA_SIZE,
            GLES30.GL_FLOAT,
            false,
            0,
            NO_OFFSET
        )

        // 绑定纹理数据
        val textureHandle = GLES30.glGetAttribLocation(mProgram, "aTexCoord")
        GLES30.glEnableVertexAttribArray(textureHandle)
        GLES30.glBindBuffer(GLES30.GL_ARRAY_BUFFER, mTexCoordVBO)
        GLES30.glVertexAttribPointer(
            textureHandle,
            TEXTURE_POS_DATA_SIZE,
            GLES30.GL_FLOAT,
            false,
            0,
            NO_OFFSET
        )

            // 绘制纹理
            GLES30.glDrawArrays(GLES30.GL_TRIANGLE_STRIP, NO_OFFSET, vertex.size / VERTEX_POS_DATA_SIZE)

        // 解绑顶点数据
        GLES30.glDisableVertexAttribArray(positionHandle)
        // 解绑纹理数据
        GLES30.glDisableVertexAttribArray(textureHandle)
    }

    fun enableTexture() {
        // 激活纹理编号
        GLES30.glActiveTexture(GLES30.GL_TEXTURE0)
        GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, mTextureID[0])
        // 激活纹理取样器
        val textureSampleHandle = GLES30.glGetUniformLocation(mProgram, "uTexture")
        GLES30.glUniform1i(textureSampleHandle, 0)
    }

    // 加载纹理
    fun loadTexture(context: Context, resourceId: Int) : Int {
        val textureId = IntArray(1)
        // 生成纹理
        GLES30.glGenTextures(1, textureId, 0)
        // 绑定纹理
        GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, textureId[0])
        // 设置纹理参数
        GLES30.glTexParameteri(
            GLES30.GL_TEXTURE_2D,
            GLES30.GL_TEXTURE_MIN_FILTER,
            GLES30.GL_LINEAR
        ) // 纹理缩小时使用线性插值
        GLES30.glTexParameteri(
            GLES30.GL_TEXTURE_2D,
            GLES30.GL_TEXTURE_MAG_FILTER,
            GLES30.GL_LINEAR
        ) // 纹理放大时使用线性插值
        GLES30.glTexParameteri(
            GLES30.GL_TEXTURE_2D,
            GLES30.GL_TEXTURE_WRAP_S,
            GLES30.GL_CLAMP_TO_EDGE
        ) // 纹理坐标超出范围时,超出部分使用最边缘像素进行填充
        GLES30.glTexParameteri(
            GLES30.GL_TEXTURE_2D,
            GLES30.GL_TEXTURE_WRAP_T,
            GLES30.GL_CLAMP_TO_EDGE
        ) // 纹理坐标超出范围时,超出部分使用最边缘像素进行填充
        // 加载图片
        val options = BitmapFactory.Options().apply {
            inScaled = false // 不进行缩放
        }
        val bitmap = BitmapFactory.decodeResource(context.resources, resourceId, options)
        // 将图片数据加载到纹理中
        GLUtils.texImage2D(GLES30.GL_TEXTURE_2D, 0, bitmap, 0)
        // 释放资源
        bitmap.recycle()
        // 解绑纹理
        GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, 0)
        return textureId[0]
    }

    object LoadShaderUtil {
        // 创建着色器对象
        fun loadShader(type: Int, source: String): Int {
            val shader = GLES30.glCreateShader(type)
            GLES30.glShaderSource(shader, source)
            GLES30.glCompileShader(shader)
            return shader
        }
    }
}

效果图

在这里插入图片描述


http://www.kler.cn/a/572746.html

相关文章:

  • 词向量(Word Embedding)
  • 【SegRNN 源码理解】图示理解 forward的过程
  • 使用 marked.min.js 实现 Markdown 编辑器 —— 我的博客后台选择之旅
  • MySQL8 忘记密码
  • 【金融量化】Ptrade中交易环境支持的业务类型
  • Mysql命令大全(连接Mysql)
  • 单体架构、集群、分布式、微服务的区别!
  • Web服务器配置
  • shell文本处理
  • 美股行情数据:历史高频分钟回测数据策略分析
  • nvm的使用汇总
  • 【C++设计模式】第二篇:工厂方法模式(Factory Method)
  • mapbox高阶,结合threejs(threebox)实现立体三维飞线图
  • 15. 示例:创建AXI-Lite事务类(addr/data/rw)
  • JavaWeb-CS和BS的异同点
  • 调用链追踪(Trace ID)
  • 关于tresos Studio(EB)的MCAL配置之GPT
  • 计算机毕设-基于springboot的网上商城系统的设计与实现(附源码+lw+ppt+开题报告)
  • VSTO(C#)Excel开发起步
  • unittest框架 核心知识的系统复习及与pytest的对比