[machine learning] MACS、MACs、FLOPS、FLOPs
本文介绍机器学习中衡量一个模型计算复杂度的四个指标:MACS、MACs、FLOPS、FLOPs。
首先从含义上讲,可以分类两类:MACS/FLOPS和MACs/FLOPs。MACs/FLOPs表示总的操作数(后缀s可以看成是表示复数),MACS/FLOPS表示每秒可以执行的操作数(即:MACs per Second/FLOPs per Second)。
从名称上讲,MAC (Multiply-Accumulate Operation)
表示乘加操作,FLOP (Floating Point Operation)
表示浮点操作,很容易可以得到一次MAC是两次FLOP,即:FLOPs = 2 × MACs
。
下面以一个简单的例子,计算模型的MACs:
假设模型是一个三层的FFN模型,每一层的Neuron数都是1024个,输入维数是4,输出维数是2,求这个模型的MACs。
第一层:MACs = 1024×4 = 4096
第二层:MACs = 1024×1024 = 1,048,576
第三层:MACs = 2×1024 = 2048
Total MACs = 4096 + 1,048,576 + 2048 = 1,054,720
我们也可以简单说这个模型的计算复杂度是2 MFLOPs
(2×MACs)
在PyTorch中,我们可以使用fvcore
第三方库直接得到模型的预估计算复杂度:
import torch
from torchvision.models import resnet50
from fvcore.nn import FlopCountAnalysis
# Example model, replace with your model
model = resnet50()
# Example input, replace with the appropriate input size for your model
inputs = torch.randn(1, 3, 224, 224)
# Calculate FLOPs
flops = FlopCountAnalysis(model, inputs)
print(f"FLOPs: {flops.total()}")
根据复杂度的级数,对应不同FLOPs的称谓:
- KFLOPs: 10^3 (thousand)
- MFLOPs: 10^6 (million)
- GFLOPs: 10^9 (billion)
- TFLOPs: 10^12 (trillion)
了解以上的概念之后,我们拿到一个模型和一台机器,就能大概评估出这个模型在这台机器上运行的性能。比如说一个模型的计算复杂度是1 GFLOPs,机器CPU的性能是2 GFLOPS,不考虑其他性能损耗,理想状况下这台机器一秒钟可以推理这个模型两次。
最后贴一下NVIDIA一些常见GPU的性能:
# https://www.techpowerup.com/gpu-specs/h100-pcie-80-gb.c3899
"H100": {
torch.float32: 51.22e12, # 51.22 TFLOPS for FP32 on NVIDIA H100
torch.float16: 204.9e12, # 204.9 TFLOPS for FP16 on NVIDIA H100
torch.bfloat16: 204.9e12
},
# https://www.techpowerup.com/gpu-specs/l4.c4091
"L4": {
torch.float32: 30.29e12, # 30.29 TFLOPS for FP32 on NVIDIA L4
torch.float16: 30.29e12, # 30.29 TFLOPS for FP16 on NVIDIA L4
torch.bfloat16: 30.29e12
},
# https://www.techpowerup.com/gpu-specs/tesla-t4.c3316
"T4": {
torch.float32: 8.1e12, # 8.1 TFLOPS for FP32 on NVIDIA T4
torch.float16: 65.13e12, # 65.13 TFLOPS for FP16 on NVIDIA T4
torch.bfloat16: 65.13e12
},
# https://www.techpowerup.com/gpu-specs/a10g.c3798
"A10G": {
torch.float32: 31.52e12, # 31.52 TFLOPS for FP32 on NVIDIA A10G
torch.float16: 31.52e12, # 31.52 TFLOPS for FP16 on NVIDIA A10G
torch.bfloat16: 31.52e12
},
# https://www.techpowerup.com/gpu-specs/a100-pcie-40-gb.c3623
"A100": {
torch.float32: 19.49e12, # 19.49 TFLOPS for FP32 on NVIDIA A100
torch.float16: 77.97e12, # 77.97 TFLOPS for FP16 on NVIDIA A100
torch.bfloat16: 77.97e12
},
# https://www.techpowerup.com/gpu-specs/geforce-rtx-3080.c3621
"RTX_3080": {
torch.float32: 29.77e12, # 29.77 TFLOPS for FP32 on NVIDIA RTX 3080
torch.float16: 29.77e12, # 29.77 TFLOPS for FP16 on NVIDIA RTX 3080
torch.bfloat16: 29.77e12
},
# https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622
"RTX_3090": {
torch.float32: 35.58e12, # 35.58 TFLOPS for FP32 on NVIDIA RTX 3090
torch.float16: 35.58e12, # 35.58 TFLOPS for FP16 on NVIDIA RTX 3090
torch.bfloat16: 35.58e12
}