当前位置: 首页 > article >正文

FastGPT 源码:混合检索调用链路

文章目录

    • FastGPT 源码:混合检索调用链路
      • 1. 入口函数
      • 2. 核心搜索函数
      • 3. RRF合并函数
      • 4. Rerank重排序函数
      • 5. 完整流程

FastGPT 源码:混合检索调用链路

主要调用链路如下:

1. 入口函数

dispatchDatasetSearch(packages/service/core/workflow/dispatch/dataset/search.ts):

export async function dispatchDatasetSearch(props: DatasetSearchProps) {
  // 1. 获取参数
  const {
    teamId,
    histories,
    module,
    params: {
      datasets,
      similarity,
      limit,
      usingReRank,
      searchMode,
      userChatInput
    }
  } = props;

  // 2. 问题优化/扩展
  const { concatQueries, rewriteQuery } = await datasetSearchQueryExtension({
    query: userChatInput,
    extensionModel,
    extensionBg,
    histories
  });

  // 3. 调用核心搜索函数
  const { searchRes } = await searchDatasetData({
    teamId,
    reRankQuery: rewriteQuery,
    queries: concatQueries,
    model: vectorModel.model,
    similarity,
    limit,
    datasetIds: datasets.map((item) => item.datasetId),
    searchMode,
    usingReRank
  });
}

2. 核心搜索函数

searchDatasetData(packages/service/core/dataset/search/controller.ts):

export async function searchDatasetData({
  teamId,
  reRankQuery,
  queries,
  model,
  similarity,
  limit,
  searchMode,
  usingReRank,
  datasetIds
}) {
  // 1. 向量检索和全文检索
  const { embeddingRecallResults, fullTextRecallResults } = await multiQueryRecall({
    embeddingLimit,
    fullTextLimit
  });

  // 2. 第一次RRF合并(向量检索和全文检索结果)
  const concatRecallResults = embeddingRecallResults.concat(
    fullTextRecallResults.filter((item) => !set.has(item.id))
  );

  // 3. Rerank二次排序
  const reRankResults = await reRankSearchResult({
    query: reRankQuery,
    data: concatRecallResults 
  });

  // 4. 最终RRF合并(三种结果)
  const rrfConcatResults = datasetSearchResultConcat([
    { k: 60, list: embeddingRecallResults },
    { k: 60, list: fullTextRecallResults },
    { k: 58, list: reRankResults }
  ]);

  // 5. 结果过滤和处理
  const scoreFilter = filterResults(rrfConcatResults);
  return { searchRes: filterResultsByMaxTokens(scoreFilter, maxTokens) };
}

3. RRF合并函数

datasetSearchResultConcat(packages/global/core/dataset/search/utils.ts):

export const datasetSearchResultConcat = (arr: { k: number; list: SearchDataResponseItemType[] }[]) => {
  // 1. 计算每个结果的RRF分数
  arr.forEach((item) => {
    const k = item.k;
    item.list.forEach((data, index) => {
      const rank = index + 1;
      const score = 1 / (k + rank);
      // 合并分数...
    });
  });

  // 2. 根据RRF分数排序
  return results.sort((a, b) => b.rrfScore - a.rrfScore);
}

4. Rerank重排序函数

reRankRecall(packages/service/core/ai/rerank/index.ts):

export function reRankRecall({query, documents}) {
  // 调用重排序模型API
  return POST(model.requestUrl, {
    model: model.model,
    query,
    documents: documents.map((doc) => doc.text)
  }).then(data => {
    // 返回重排序结果和分数
    return data?.results?.map(item => ({
      id: documents[item.index].id,
      score: item.relevance_score
    }));
  });
}

5. 完整流程

  1. dispatchDatasetSearch 作为入口,接收搜索参数
  2. 调用 searchDatasetData 执行核心搜索逻辑
  3. searchDatasetData 中:
    • 先执行向量检索和全文检索
    • 合并这两种检索结果
    • 调用 reRankRecall 进行重排序
    • 最后通过 datasetSearchResultConcat 合并所有结果
  4. 返回最终过滤和处理后的搜索结果

这个调用链路完整实现了:

  • Embedding 和 BM25 检索
  • 结果合并后的 Rerank
  • 最终三路结果的 RRF 合并

http://www.kler.cn/a/573778.html

相关文章:

  • PHP fastadmin 学习
  • [杂学笔记]HTTP1.0和HTTP1.1区别、socket系列接口与TCP协议、传输长数据的时候考虑网络问题、慢查询如何优化、C++的垃圾回收机制
  • MQ保证消息的顺序性
  • 如何在Windows下离线部署DeepSeek并以WebApi形式调用
  • Golang的代码注释规范指南
  • Macro Bullion:国际金价回调态势下,金市表现与金银交易建议
  • 数据结构与算法:回溯(下):子集相关力扣题(78.子集、90.子集Ⅱ、491.非递减子序列)、排列相关力扣题(46.全排列、47.全排列Ⅱ)
  • es如何进行refresh?
  • 鸿蒙NEXT开发-端云一体化开发
  • Python 爬取唐诗宋词三百首
  • 由麻省理工学院计算机科学与人工智能实验室等机构创建低成本、高效率的物理驱动数据生成框架,助力接触丰富的机器人操作任务
  • 闭包:前端开发的“记忆胶囊“与Vue框架的“隐身特工“
  • ANI AGI ASI的区别
  • python学习第三天
  • C# Enumerable类 之 数据(类型)转换
  • 【菜笔cf刷题日常-1600】C. Balanced Stone Heaps(二分求min/max)
  • 整除分块 2025牛客寒假算法基础集训营3G
  • Kotlin 协程(三)协程的常用关键字使用及其比较
  • Visual Stdio 2022 C#调用DeepSeek API
  • HCIA—IP路由静态